Cargando…

Induction of apoptosis in myeloid leukaemic cells by ribozymes targeted against AML1/MTG8

The translocation (8;21)(q22;q22) is a karyotypic abnormality detected in acute myeloid leukaemia (AML) M2 and results in the formation of the chimeric fusion gene AML1/MTG8. We previously reported that two hammerhead ribozymes against AML1/MTG8 cleave this fusion transcript and also inhibit the pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsushita, H, Kizaki, M, Kobayashi, H, Muto, A, Ikeda, Y
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2362727/
https://www.ncbi.nlm.nih.gov/pubmed/10188872
http://dx.doi.org/10.1038/sj.bjc.6690214
Descripción
Sumario:The translocation (8;21)(q22;q22) is a karyotypic abnormality detected in acute myeloid leukaemia (AML) M2 and results in the formation of the chimeric fusion gene AML1/MTG8. We previously reported that two hammerhead ribozymes against AML1/MTG8 cleave this fusion transcript and also inhibit the proliferation of myeloid leukaemia cell line Kasumi-1 which possesses t(8;21)(q22;q22). In this study, we investigated the mechanisms of inhibition of proliferation in myeloid leukaemic cells with t(8;21)(q22;q22) by ribozymes. These ribozymes specifically inhibited the growth of Kasumi-1 cells, but did not affect the leukaemic cells without t(8;21)(q22;q22). We observed the morphological changes including chromatin condensation, fragmentation and the formation of apoptotic bodies in Kasumi-1 cells incubated with ribozymes for 7 days. In addition, DNA ladder formation was also detected after incubation with ribozymes which suggested the induction of apoptosis in Kasumi-1 cells by the AML1/MTG8 ribozymes. However, the ribozymes did not induce the expression of CD11b and CD14 antigens in Kasumi-1 cells. The above data suggest that these ribozymes therefore inhibit the growth of myeloid leukaemic cells with t(8;21)(q22;q22) by the induction of apoptosis, but not differentiation. We conclude therefore that the ribozymes targeted against AML1/MTG8 may have therapeutic potential for patients with AML carrying t(8;21)(q22;q22) while, in addition, the product of the chimeric gene is responsible for the pathogenesis of myeloid leukaemia. © 1999 Cancer Research Campaign