Cargando…

Detection of functional PTEN lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus

The human tumour suppressor gene PTEN located at 10q23 is mutated in a variety of tumour types particularly metastatic cases and in the germline of some individuals with Cowdens cancer predisposition syndrome. We have assessed the status of PTEN and associated pathways in cell lines derived from 19...

Descripción completa

Detalles Bibliográficos
Autores principales: Snaddon, J, Parkinson, E K, Craft, J A, Bartholomew, C, Fulton, R
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2363680/
https://www.ncbi.nlm.nih.gov/pubmed/11401316
http://dx.doi.org/10.1054/bjoc.2001.1848
_version_ 1782153765051170816
author Snaddon, J
Parkinson, E K
Craft, J A
Bartholomew, C
Fulton, R
author_facet Snaddon, J
Parkinson, E K
Craft, J A
Bartholomew, C
Fulton, R
author_sort Snaddon, J
collection PubMed
description The human tumour suppressor gene PTEN located at 10q23 is mutated in a variety of tumour types particularly metastatic cases and in the germline of some individuals with Cowdens cancer predisposition syndrome. We have assessed the status of PTEN and associated pathways in cell lines derived from 19 squamous cell carcinomas of the head and neck. Loss of heterozygosity is evident at, or close to the PTEN gene in 5 cases, however there were no mutations in the remaining alleles. Furthermore by Western analysis PTEN protein levels are normal in all of these SCC-HN tumours and cell lines. To assess the possibility that PTEN may be inactivated by another mechanism, we characterized lipid phosphatase levels and from a specific PIP3 biochemical assay it is clear that PTEN is functionally active in all 19 human SCCs. Our data strongly suggest the possibility that a tumour suppressor gene associated with development of SCC-HN, other than PTEN, is located in this chromosomal region. This gene does not appear to be MXI-1, which has been implicated in some other human tumour types. PTEN is an important negative regulator of PI3Kinase, of which subunit alpha is frequently amplified in SCC-HN. To examine the possibility that PI3K is upregulated by amplification in this tumour set we assessed the phosphorylation status of Akt, a downstream target of PI3K. In all cases there is no detectable increase in Akt phosphorylation. Therefore there is no detectable defect in the PI3K pathway in SCC-HN suggesting that the reason for 3q26.3 over-representation may be due to genes other than PI3K110α. © 2001 Cancer Research Campaign http://www.bjcancer.com
format Text
id pubmed-2363680
institution National Center for Biotechnology Information
language English
publishDate 2001
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-23636802009-09-10 Detection of functional PTEN lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus Snaddon, J Parkinson, E K Craft, J A Bartholomew, C Fulton, R Br J Cancer Regular Article The human tumour suppressor gene PTEN located at 10q23 is mutated in a variety of tumour types particularly metastatic cases and in the germline of some individuals with Cowdens cancer predisposition syndrome. We have assessed the status of PTEN and associated pathways in cell lines derived from 19 squamous cell carcinomas of the head and neck. Loss of heterozygosity is evident at, or close to the PTEN gene in 5 cases, however there were no mutations in the remaining alleles. Furthermore by Western analysis PTEN protein levels are normal in all of these SCC-HN tumours and cell lines. To assess the possibility that PTEN may be inactivated by another mechanism, we characterized lipid phosphatase levels and from a specific PIP3 biochemical assay it is clear that PTEN is functionally active in all 19 human SCCs. Our data strongly suggest the possibility that a tumour suppressor gene associated with development of SCC-HN, other than PTEN, is located in this chromosomal region. This gene does not appear to be MXI-1, which has been implicated in some other human tumour types. PTEN is an important negative regulator of PI3Kinase, of which subunit alpha is frequently amplified in SCC-HN. To examine the possibility that PI3K is upregulated by amplification in this tumour set we assessed the phosphorylation status of Akt, a downstream target of PI3K. In all cases there is no detectable increase in Akt phosphorylation. Therefore there is no detectable defect in the PI3K pathway in SCC-HN suggesting that the reason for 3q26.3 over-representation may be due to genes other than PI3K110α. © 2001 Cancer Research Campaign http://www.bjcancer.com Nature Publishing Group 2001-06 /pmc/articles/PMC2363680/ /pubmed/11401316 http://dx.doi.org/10.1054/bjoc.2001.1848 Text en Copyright © 2001 Cancer Research Campaign https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.
spellingShingle Regular Article
Snaddon, J
Parkinson, E K
Craft, J A
Bartholomew, C
Fulton, R
Detection of functional PTEN lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus
title Detection of functional PTEN lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus
title_full Detection of functional PTEN lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus
title_fullStr Detection of functional PTEN lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus
title_full_unstemmed Detection of functional PTEN lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus
title_short Detection of functional PTEN lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus
title_sort detection of functional pten lipid phosphatase protein and enzyme activity in squamous cell carcinomas of the head andeck, despite loss of heterozygosity at this locus
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2363680/
https://www.ncbi.nlm.nih.gov/pubmed/11401316
http://dx.doi.org/10.1054/bjoc.2001.1848
work_keys_str_mv AT snaddonj detectionoffunctionalptenlipidphosphataseproteinandenzymeactivityinsquamouscellcarcinomasoftheheadandeckdespitelossofheterozygosityatthislocus
AT parkinsonek detectionoffunctionalptenlipidphosphataseproteinandenzymeactivityinsquamouscellcarcinomasoftheheadandeckdespitelossofheterozygosityatthislocus
AT craftja detectionoffunctionalptenlipidphosphataseproteinandenzymeactivityinsquamouscellcarcinomasoftheheadandeckdespitelossofheterozygosityatthislocus
AT bartholomewc detectionoffunctionalptenlipidphosphataseproteinandenzymeactivityinsquamouscellcarcinomasoftheheadandeckdespitelossofheterozygosityatthislocus
AT fultonr detectionoffunctionalptenlipidphosphataseproteinandenzymeactivityinsquamouscellcarcinomasoftheheadandeckdespitelossofheterozygosityatthislocus