Cargando…

High rates of loss of heterozygosity on chromosome 19p13 in human breast cancer

We have recently discovered that the nuclear matrix protein SAFB is an oestrogen receptor corepressor. Since it has become clear that many steroid receptor cofactors play important roles in breast tumorigenesis, we investigated whether SAFB could also be involved in breast cancer. To address this qu...

Descripción completa

Detalles Bibliográficos
Autores principales: Oesterreich, S, Allredl, D C, Mohsin, S K, Zhang, Q, Wong, H, Lee, A V, Osborne, C K, O'Connell, P
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2363776/
https://www.ncbi.nlm.nih.gov/pubmed/11207044
http://dx.doi.org/10.1054/bjoc.2000.1606
Descripción
Sumario:We have recently discovered that the nuclear matrix protein SAFB is an oestrogen receptor corepressor. Since it has become clear that many steroid receptor cofactors play important roles in breast tumorigenesis, we investigated whether SAFB could also be involved in breast cancer. To address this question, the gene locus was examined for structural alterations in breast cancer tissue. Laser capture microdissection was used for isolating DNA from paired primary breast tumour and normal tissue specimens, and the loss of heterozygosity (LOH) at chromosome 19p13.2–3 was determined by use of microsatellite markers. LOH was detected at the marker D19S216, which colocalizes with the SAFB locus, in specimens from 29 (78.4%) of 37 informative patients. The peak LOH rate occurred at D19S216 near the SAFB locus, with LOH frequencies ranging from 21.6% to 47.2% at other markers. The finding of a very high LOH rate at the marker D19S216 strongly indicates the presence of a breast tumour-suppressor gene locus. While preliminary findings of mutations in SAFB suggest that this indeed may be a promising candidate, other potential candidate genes are located at this locus. © 2001 Cancer Research Campaign http://www.bjcancer.com