Cargando…
Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: Selective energy depletion
This paper, for the first time, demonstrates that exposure of cells to the poly(ethylene oxide)-poly(propylene oxide) block copolymer, Pluronic P85, results in a substantial decrease in ATP levels selectively in MDR cells. Cells expressing high levels of functional P-glycoprotein (MCF-7/ADR, KBv; LL...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2001
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364003/ https://www.ncbi.nlm.nih.gov/pubmed/11747344 http://dx.doi.org/10.1054/bjoc.2001.2165 |
Sumario: | This paper, for the first time, demonstrates that exposure of cells to the poly(ethylene oxide)-poly(propylene oxide) block copolymer, Pluronic P85, results in a substantial decrease in ATP levels selectively in MDR cells. Cells expressing high levels of functional P-glycoprotein (MCF-7/ADR, KBv; LLC-MDR1; Caco-2, bovine brain microvessel endothelial cells [BBMECs]) are highly responsive to Pluronic treatment, while cells with low levels of P-glycoprotein expression (MCF-7, KB, LLC-PK1, human umbilical vein endothelial cells [HUVECs] C2C12 myoblasts) are much less responsive to such treatment. Cytotoxicity studies suggest that Pluronic acts as a chemosensitizer and potentiates cytotoxic effects of doxorubicin in MDR cells. The ability of Pluronic to inhibit P-glycoprotein and sensitize MDR cells appears to be a result of ATP depletion. Because many mechanisms of drug resistance are energy dependent, a successful strategy for treating MDR cancer could be based on selective energy depletion in MDR cells. Therefore, the finding of the energy-depleting effects of Pluronic P85, in combination with its sensitization effects is of considerable theoretical and practical significance. © 2001 Cancer Research Campaign http://www.bjcancer.com |
---|