Cargando…

Functional analysis of the mismatch repair system in bladder cancer

In bladder cancer the observed microsatellite instability indicates that mismatch repair deficiency could be a frequently involved factor in bladder cancer progression. To investigate this hypothesis we analysed extracts of seven bladder cancer cell lines and, as a novel approach, five clinical canc...

Descripción completa

Detalles Bibliográficos
Autores principales: Thykjaer, T, Christensen, M, Clark, A B, Hansen, L R T, Kunkel, T A, Ørntoft, T F
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364098/
https://www.ncbi.nlm.nih.gov/pubmed/11506498
http://dx.doi.org/10.1054/bjoc.2001.1949
Descripción
Sumario:In bladder cancer the observed microsatellite instability indicates that mismatch repair deficiency could be a frequently involved factor in bladder cancer progression. To investigate this hypothesis we analysed extracts of seven bladder cancer cell lines and, as a novel approach, five clinical cancer samples for mismatch repair activity. We found that one cell line (T24) and three of the clinical samples had a reduced repair capacity, measured to ~20% or less. The T24 cell extract was unable to repair a G-G mismatch and showed reduced repair of a 2-base loop, consistent with diminished function of the MSH2-MSH6 heterodimer. The functional assay was combined with measurement for mutation frequency, microsatellite analysis, sequencing, MTT assay, immunohistochemical analysis and RT-PCR analysis of the mismatch repair genes MSH2, MSH3, MSH6, PMS1, PMS2 and MLH1. A >7-fold relative increase in mutation frequency was observed for T24 compared to a bladder cancer cell line with a fully functional mismatch repair system. Neither microsatellite instability, loss of repair nor mismatch repair gene mutations were detected. However, RT-PCR analysis of mRNA levels did detect changes in the ratio of expression of the Mut S and Mut L homologues. The T24 cell line had the lowest MSH6 expression level of the cell lines tested. Identical RT-PCR analysis of seventeen clinical samples (normal urothelium, 7; pTa low stage, 5; and pT1-4 high stage, 5) indicated a significant change in the expression ratio between MSH3/MSH6 (P< 0.004), MSH2/MSH3 (P< 0.012) and PMS2/MLH1 P< 0.005, in high stage bladder tumours compared to normal urothelium and low stage tumours. Collectively, the data suggest that imbalanced expression of mismatch repair genes could lead to partial loss of mismatch repair activity that is associated with invasive bladder cancer. © 2001 Cancer Research Campaign http://www.bjcancer.com