Cargando…

Application of microarray outlier detection methodology to psychiatric research

BACKGROUND: Most microarray data processing methods negate extreme expression values or alter them so that they do not lie outside the mean level of variation of the system. While microarrays generate a substantial amount of false positive and spurious results, some of the extreme expression values...

Descripción completa

Detalles Bibliográficos
Autores principales: Ernst, Carl, Bureau, Alexandre, Turecki, Gustavo
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364617/
https://www.ncbi.nlm.nih.gov/pubmed/18433482
http://dx.doi.org/10.1186/1471-244X-8-29
Descripción
Sumario:BACKGROUND: Most microarray data processing methods negate extreme expression values or alter them so that they do not lie outside the mean level of variation of the system. While microarrays generate a substantial amount of false positive and spurious results, some of the extreme expression values may be valid and could represent true biological findings. METHODS: We propose a simple method to screen brain microarray data to detect individual differences across a psychiatric sample set. We demonstrate in two different samples how this method can be applied. RESULTS: This method targets high-throughput technology to psychiatric research on a subject-specific basis. CONCLUSION: Assessing microarray data for both mean group effects and individual effects can lead to more robust findings in psychiatric genetics.