Cargando…
Application of microarray outlier detection methodology to psychiatric research
BACKGROUND: Most microarray data processing methods negate extreme expression values or alter them so that they do not lie outside the mean level of variation of the system. While microarrays generate a substantial amount of false positive and spurious results, some of the extreme expression values...
Autores principales: | Ernst, Carl, Bureau, Alexandre, Turecki, Gustavo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364617/ https://www.ncbi.nlm.nih.gov/pubmed/18433482 http://dx.doi.org/10.1186/1471-244X-8-29 |
Ejemplares similares
-
Data mining application to healthcare fraud detection: a two-step unsupervised clustering method for outlier detection with administrative databases
por: Massi, Michela Carlotta, et al.
Publicado: (2020) -
Biomarker discovery: quantification of microRNAs and other small non-coding RNAs using next generation sequencing
por: Lopez, Juan Pablo, et al.
Publicado: (2015) -
Psychosocial, psychiatric and work-related risk factors associated with suicide in Ireland: optimised methodological approach of a case-control psychological autopsy study
por: Arensman, E., et al.
Publicado: (2019) -
Advanced stratification analyses in molecular association meta-analysis: methodology and application
por: Lin, Shuhuang, et al.
Publicado: (2020) -
Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots
por: Yang, Song, et al.
Publicado: (2007)