Cargando…

Down-Regulation of Porcine Heart Diaphorase Reactivity by Trimanganese Hexakis(3,5-Diisopropylsalicylate), Mn(3)(3,5-DIPS)6, and Down-Regulation of Nitric Oxide Synthase Reactivity by Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4)

Purposes of this work were to examine the plausible down-regulation of porcine heart diaphorase (PHD) enzyme reactivity and nitric oxide synthase (NOS) enzyme reactivity by trimanganese hexakis(3,5-diisopropylsalicylate), [Mn(3)(3,5-DIPS)(6)] as well as dicopper tetrakis(3,5- diisopropylsalicylate,...

Descripción completa

Detalles Bibliográficos
Autores principales: Booth, Billynda L., Pitters, Eva, Mayer, Bernd, Sorenson, John R. J.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2365161/
https://www.ncbi.nlm.nih.gov/pubmed/18475889
http://dx.doi.org/10.1155/MBD.1999.111
_version_ 1782154101077835776
author Booth, Billynda L.
Pitters, Eva
Mayer, Bernd
Sorenson, John R. J.
author_facet Booth, Billynda L.
Pitters, Eva
Mayer, Bernd
Sorenson, John R. J.
author_sort Booth, Billynda L.
collection PubMed
description Purposes of this work were to examine the plausible down-regulation of porcine heart diaphorase (PHD) enzyme reactivity and nitric oxide synthase (NOS) enzyme reactivity by trimanganese hexakis(3,5-diisopropylsalicylate), [Mn(3)(3,5-DIPS)(6)] as well as dicopper tetrakis(3,5- diisopropylsalicylate, [Cu(II)(2)(3,5-DIPS)(4)] as a mechanistic accounting for their pharmacological activities. Porcine heart disease was found to oxidize 114 μM reduced nicotinamide-adenine- dinucleotide-′(3)-phosphate (NADPH) with a corresponding reduction of an equivalent concentration of 2,6-dichlorophenolindophenol (DCPIP). As reported for Cu(II)(2) (3,5-DIPS)(4), addition of Mn(3)(3,5-DIPS)(6) to this reaction mixture decreased the reduction of DCPIP without significantly affecting the oxidation of NADPH. The concentration of Mn(3)(3,5-DIPS)(6) that produced a 50% decrease in DCPIP reduction (IC(50)) was found to be 5μM. Mechanistically, this inhibition of DCPIP reduction with ongoing NADPH oxidation by PHD was found to be due to the ability of Mn(3)(3,5-DIPS)(6) to serve as a catalytic electron acceptor for reduced PHD as had been reported for Cu(II)(2)(3,5-DIPS)(4). This catalytic decrease in reduction of DCPIP by Mn(3)(3,5-DIPS)(6) was enhanced by the presence of a large concentration of DCPIP and decreased by the presence of a large concentration of NADPH, consistent with what had been observed for the activity of Cu(II)(2)(3,5-DIPS)(4) Oxidation of NADPH by PHD in the presence of Mn(3)(3,5-DIPS)(6) and the absence of DCPIP was linearly related to the concentration of added Mn(3)(3,5-DIPS)(6) through the concentration range of 2.4 μM to 38μM with a 50% recovery of NADPH oxidation by PHD at a concentration of 6 μM Mn(3)(3,5-DIPS)(6) Conversion of [(3)H] L-Arginine to [(3)H] L-Citrulline by purified rat brain nitric oxide synthase (NOS) was decreased in a concentrated related fashion with the addition of Mn(3)(3,5-DIPS)(6) as well as Cu(II)(2)(3,5-DIPS)(4) which is an extention of results reported earlier for Cu(II)(2)(3,5-DIPS)(4). The concentration of these two compounds required to produce a 50% decrease in L-Citrulline synthesis by NOS, which may be due to down-regulation of NOS, were 0.1 mM and [Formula: see text] respectively, consistent with the relative potencies of these two complexes in preventing the reduction of Cytochrome c by NOS. It is concluded that Mn(3)(3,5-DIPS)(6), as has been reported for Cu(II)(2) (3,5-DIPS)(4) , serves as an electron acceptor in down-regulating PHD and both of these complexes down-regulate rat brain NOS reactivity. A decrease in NO synthesis in animal models of seizure and radiation injury may account for the anticonvulsant, radioprotectant, and radiorecovery activities of Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4).
format Text
id pubmed-2365161
institution National Center for Biotechnology Information
language English
publishDate 1999
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-23651612008-05-12 Down-Regulation of Porcine Heart Diaphorase Reactivity by Trimanganese Hexakis(3,5-Diisopropylsalicylate), Mn(3)(3,5-DIPS)6, and Down-Regulation of Nitric Oxide Synthase Reactivity by Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4) Booth, Billynda L. Pitters, Eva Mayer, Bernd Sorenson, John R. J. Met Based Drugs Research Article Purposes of this work were to examine the plausible down-regulation of porcine heart diaphorase (PHD) enzyme reactivity and nitric oxide synthase (NOS) enzyme reactivity by trimanganese hexakis(3,5-diisopropylsalicylate), [Mn(3)(3,5-DIPS)(6)] as well as dicopper tetrakis(3,5- diisopropylsalicylate, [Cu(II)(2)(3,5-DIPS)(4)] as a mechanistic accounting for their pharmacological activities. Porcine heart disease was found to oxidize 114 μM reduced nicotinamide-adenine- dinucleotide-′(3)-phosphate (NADPH) with a corresponding reduction of an equivalent concentration of 2,6-dichlorophenolindophenol (DCPIP). As reported for Cu(II)(2) (3,5-DIPS)(4), addition of Mn(3)(3,5-DIPS)(6) to this reaction mixture decreased the reduction of DCPIP without significantly affecting the oxidation of NADPH. The concentration of Mn(3)(3,5-DIPS)(6) that produced a 50% decrease in DCPIP reduction (IC(50)) was found to be 5μM. Mechanistically, this inhibition of DCPIP reduction with ongoing NADPH oxidation by PHD was found to be due to the ability of Mn(3)(3,5-DIPS)(6) to serve as a catalytic electron acceptor for reduced PHD as had been reported for Cu(II)(2)(3,5-DIPS)(4). This catalytic decrease in reduction of DCPIP by Mn(3)(3,5-DIPS)(6) was enhanced by the presence of a large concentration of DCPIP and decreased by the presence of a large concentration of NADPH, consistent with what had been observed for the activity of Cu(II)(2)(3,5-DIPS)(4) Oxidation of NADPH by PHD in the presence of Mn(3)(3,5-DIPS)(6) and the absence of DCPIP was linearly related to the concentration of added Mn(3)(3,5-DIPS)(6) through the concentration range of 2.4 μM to 38μM with a 50% recovery of NADPH oxidation by PHD at a concentration of 6 μM Mn(3)(3,5-DIPS)(6) Conversion of [(3)H] L-Arginine to [(3)H] L-Citrulline by purified rat brain nitric oxide synthase (NOS) was decreased in a concentrated related fashion with the addition of Mn(3)(3,5-DIPS)(6) as well as Cu(II)(2)(3,5-DIPS)(4) which is an extention of results reported earlier for Cu(II)(2)(3,5-DIPS)(4). The concentration of these two compounds required to produce a 50% decrease in L-Citrulline synthesis by NOS, which may be due to down-regulation of NOS, were 0.1 mM and [Formula: see text] respectively, consistent with the relative potencies of these two complexes in preventing the reduction of Cytochrome c by NOS. It is concluded that Mn(3)(3,5-DIPS)(6), as has been reported for Cu(II)(2) (3,5-DIPS)(4) , serves as an electron acceptor in down-regulating PHD and both of these complexes down-regulate rat brain NOS reactivity. A decrease in NO synthesis in animal models of seizure and radiation injury may account for the anticonvulsant, radioprotectant, and radiorecovery activities of Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4). Hindawi Publishing Corporation 1999 /pmc/articles/PMC2365161/ /pubmed/18475889 http://dx.doi.org/10.1155/MBD.1999.111 Text en Copyright © 1999 Hindawi Publishing Corporation. http://creativecommons.org/licenses/by/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Booth, Billynda L.
Pitters, Eva
Mayer, Bernd
Sorenson, John R. J.
Down-Regulation of Porcine Heart Diaphorase Reactivity by Trimanganese Hexakis(3,5-Diisopropylsalicylate), Mn(3)(3,5-DIPS)6, and Down-Regulation of Nitric Oxide Synthase Reactivity by Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4)
title Down-Regulation of Porcine Heart Diaphorase Reactivity by Trimanganese Hexakis(3,5-Diisopropylsalicylate), Mn(3)(3,5-DIPS)6, and Down-Regulation of Nitric Oxide Synthase Reactivity by Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4)
title_full Down-Regulation of Porcine Heart Diaphorase Reactivity by Trimanganese Hexakis(3,5-Diisopropylsalicylate), Mn(3)(3,5-DIPS)6, and Down-Regulation of Nitric Oxide Synthase Reactivity by Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4)
title_fullStr Down-Regulation of Porcine Heart Diaphorase Reactivity by Trimanganese Hexakis(3,5-Diisopropylsalicylate), Mn(3)(3,5-DIPS)6, and Down-Regulation of Nitric Oxide Synthase Reactivity by Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4)
title_full_unstemmed Down-Regulation of Porcine Heart Diaphorase Reactivity by Trimanganese Hexakis(3,5-Diisopropylsalicylate), Mn(3)(3,5-DIPS)6, and Down-Regulation of Nitric Oxide Synthase Reactivity by Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4)
title_short Down-Regulation of Porcine Heart Diaphorase Reactivity by Trimanganese Hexakis(3,5-Diisopropylsalicylate), Mn(3)(3,5-DIPS)6, and Down-Regulation of Nitric Oxide Synthase Reactivity by Mn(3)(3,5-DIPS)(6) and Cu(II)(2)(3,5-DIPS)(4)
title_sort down-regulation of porcine heart diaphorase reactivity by trimanganese hexakis(3,5-diisopropylsalicylate), mn(3)(3,5-dips)6, and down-regulation of nitric oxide synthase reactivity by mn(3)(3,5-dips)(6) and cu(ii)(2)(3,5-dips)(4)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2365161/
https://www.ncbi.nlm.nih.gov/pubmed/18475889
http://dx.doi.org/10.1155/MBD.1999.111
work_keys_str_mv AT boothbillyndal downregulationofporcineheartdiaphorasereactivitybytrimanganesehexakis35diisopropylsalicylatemn335dips6anddownregulationofnitricoxidesynthasereactivitybymn335dips6andcuii235dips4
AT pitterseva downregulationofporcineheartdiaphorasereactivitybytrimanganesehexakis35diisopropylsalicylatemn335dips6anddownregulationofnitricoxidesynthasereactivitybymn335dips6andcuii235dips4
AT mayerbernd downregulationofporcineheartdiaphorasereactivitybytrimanganesehexakis35diisopropylsalicylatemn335dips6anddownregulationofnitricoxidesynthasereactivitybymn335dips6andcuii235dips4
AT sorensonjohnrj downregulationofporcineheartdiaphorasereactivitybytrimanganesehexakis35diisopropylsalicylatemn335dips6anddownregulationofnitricoxidesynthasereactivitybymn335dips6andcuii235dips4