Cargando…

Guanine Oxidation in Double-stranded DNA by MnTMPyP/KHSO(5): At Least Three Independent Reaction Pathways

In order to better define the mechanism and the products of guanine oxidation within DNA, we investigated the details of the mechanism of guanine oxidation by a metalloporphyrin, Mn-TMPyP, associated to KHSO(5) on oligonucleotides. We found that the three major products of guanine oxidation are form...

Descripción completa

Detalles Bibliográficos
Autores principales: Lapi, Andrea, Pratviel, Geneviève, Meunier, Bernard
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2365246/
https://www.ncbi.nlm.nih.gov/pubmed/18475975
http://dx.doi.org/10.1155/MBD.2001.47
Descripción
Sumario:In order to better define the mechanism and the products of guanine oxidation within DNA, we investigated the details of the mechanism of guanine oxidation by a metalloporphyrin, Mn-TMPyP, associated to KHSO(5) on oligonucleotides. We found that the three major products of guanine oxidation are formed by independent reaction routes. The oxidized guanidinohydantoin (1) and the proposed spiro compound 3 derivatives are not precursors of imidazolone lesion (Iz). These guanine lesions as well as their degradation products, may account for non-detected guanine oxidation products on oxidatively damaged DNA.