Cargando…
Guanine Oxidation in Double-stranded DNA by MnTMPyP/KHSO(5): At Least Three Independent Reaction Pathways
In order to better define the mechanism and the products of guanine oxidation within DNA, we investigated the details of the mechanism of guanine oxidation by a metalloporphyrin, Mn-TMPyP, associated to KHSO(5) on oligonucleotides. We found that the three major products of guanine oxidation are form...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2001
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2365246/ https://www.ncbi.nlm.nih.gov/pubmed/18475975 http://dx.doi.org/10.1155/MBD.2001.47 |
Sumario: | In order to better define the mechanism and the products of guanine oxidation within DNA, we investigated the details of the mechanism of guanine oxidation by a metalloporphyrin, Mn-TMPyP, associated to KHSO(5) on oligonucleotides. We found that the three major products of guanine oxidation are formed by independent reaction routes. The oxidized guanidinohydantoin (1) and the proposed spiro compound 3 derivatives are not precursors of imidazolone lesion (Iz). These guanine lesions as well as their degradation products, may account for non-detected guanine oxidation products on oxidatively damaged DNA. |
---|