Cargando…

Transition Metal Ion Complexes of Schiff-bases. Synthesis, Characterization and Antibacterial Properties

Some novel transition metal [Co(II), Cu(II), Ni(II) and Zn(II)] complexes of substituted pyridine Schiff-bases have been prepared and characterized by physical, spectral and analytical data. The synthesized Schiff-bases act as deprotonated tridentate for the complexation reaction with Co(II), Ni(II)...

Descripción completa

Detalles Bibliográficos
Autores principales: Chohan, Zahid H., Munawar, Asifa, Supuran, Claudiu T.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2365267/
https://www.ncbi.nlm.nih.gov/pubmed/18475987
http://dx.doi.org/10.1155/MBD.2001.137
Descripción
Sumario:Some novel transition metal [Co(II), Cu(II), Ni(II) and Zn(II)] complexes of substituted pyridine Schiff-bases have been prepared and characterized by physical, spectral and analytical data. The synthesized Schiff-bases act as deprotonated tridentate for the complexation reaction with Co(II), Ni(II) and Zn(II) ions. The new compounds, possessing the general formula [M(L)(2)] where [M=Co(II), Cu(II), Ni(II) and Zn(II) and HL=HL(1), HL(2), HL(3) and HL(4)] show an octahedral geometry. In order to evaluate the effect of metal ions upon chelation, the Schiff bases and their complexes have been screened for antibacterial activity against the strains such as Escherichia coli,Staphylococcus aureus, and Pseudomonas aeruginosa. The complexed Schiff bases have shown to be more antibacterial against one more bacterial species as compared to uncomplexed Schiff-bases.