Cargando…

Platelet Activating Factor Synthesis and Metabolism in Intestinal Ischaemia-Reperfusion Injury

The object of this study was to characterize the synthesis and metabolism of platelet activating factor (PAF) by intestinal mucosa subjected to ischaemia–reperfusion injury. Canine intestinal mucosa produced 16:0-PAF, 18:0-PAF, and high levels of the corresponding lyso- PAF metabolites. Three h of i...

Descripción completa

Detalles Bibliográficos
Autores principales: Mangino, M. J., Murphy, M., Bohrer, A., Turk, J.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2365579/
https://www.ncbi.nlm.nih.gov/pubmed/18475586
http://dx.doi.org/10.1155/S0962935194000554
Descripción
Sumario:The object of this study was to characterize the synthesis and metabolism of platelet activating factor (PAF) by intestinal mucosa subjected to ischaemia–reperfusion injury. Canine intestinal mucosa produced 16:0-PAF, 18:0-PAF, and high levels of the corresponding lyso- PAF metabolites. Three h of intestinal ischaemia and ischaemia followed by 1 h of reperfusion did not affect the synthesis or metabolism of PAF by intestinal mucosa. Intestinal mucosa elaborated a factor that rapidly hydrolyzes PAF to lyso-PAF. The observed hydrolysis rate was not altered by ischaemia or ischaemia and reperfusion. In conclusion, this study suggests that intestinal mucosa produces PAF and rapidly hydrolyzes PAF. The PAF synthesis and metabolism rates of intestinal mucosa is not altered by ischaemia reperfusion in this model under the imposed conditions.