Cargando…
Endothelium-dependent relaxation of rat aorta to a histamine H(3) agonist is reduced by inhibitors of nitric oxide synthase, guanylate cyclase and Na(+),K(+)-ATPase
The possible involvement of different effector systems (nitric oxide synthase, guanylate cyclase, β-adrenergic and muscarinic cholinergic receptors, cyclooxygenase and lipoxygenase, and Na(+),K(+)-ATPase) was evaluated in a histamine H(3) receptor agonist-induced ((R)α-methylhistamine, (R)α-MeHA) en...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2365771/ https://www.ncbi.nlm.nih.gov/pubmed/18475701 http://dx.doi.org/10.1155/S0962935196000129 |
Sumario: | The possible involvement of different effector systems (nitric oxide synthase, guanylate cyclase, β-adrenergic and muscarinic cholinergic receptors, cyclooxygenase and lipoxygenase, and Na(+),K(+)-ATPase) was evaluated in a histamine H(3) receptor agonist-induced ((R)α-methylhistamine, (R)α-MeHA) endothelium-dependent rat aorta relaxation assay. (R)α-MeHA (0.1 nM – 0.01 mM) relaxed endothelium-dependent rat aorta, with a pD(2) value of 8.22 ± 0.06, compared with a pD(2) value of 7.98 ± 0.02 caused by histamine (50% and 70% relaxation, respectively). The effect of (R)α-MeHA (0.1 nM – 0.01 mM) was competitively antagonized by thioperamide (1, 10 and 30 nM) (pA(2) = 9.21 ± 0.40; slope = 1.03 ± 0.35) but it was unaffected by pyrilamine (100 nM), cimetidine (1 μM), atropine (10 μM), propranolol (1 μM), indomethacin (10 μM) or nordthydroguaiaretic acid (0.1 mM). Inhibitors of nitric oxide synthase, L-N(G)-monomethylarginine (L-NMMA, 10 μM) and N(G)-nitro-L-arginine methylester (L-NOARG, 10 μM) inhibited the relaxation effect of (R)α-MeHA, by approximately 52% and 70%, respectively). This inhibitory effect of L-NMMA was partially reversed by L-arginine (10 μM). Methylene blue (10 μM) and ouabain (10 μM) inhibited relaxation (R)α-MeHA-induced by approximately 50% and 90%, respectively. The products of cyclooxygenase and lipoxygenase are not involved in (R)α-MeHA-induced endothelium-dependent rat aorta relaxation nor are the muscarinic cholinergic and β-adrenergic receptors. The results also suggest the involvement of NO synthase, guanylate cyclase and Na(+),K(+)-ATPase in (R)α-MeHA-induced endothelium-dependent rat aorta relaxation. |
---|