Cargando…
Classification Models for Early Detection of Prostate Cancer
We investigate the performance of different classification models and their ability to recognize prostate cancer in an early stage. We build ensembles of classification models in order to increase the classification performance. We measure the performance of our models in an extensive cross-validati...
Autores principales: | Wichard, Joerg D., Cammann, Henning, Stephan, Carsten, Tolxdorff, Thomas |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366047/ https://www.ncbi.nlm.nih.gov/pubmed/18464915 http://dx.doi.org/10.1155/2008/218097 |
Ejemplares similares
-
Prostate-Specific Antigen (PSA) Screening and New Biomarkers for Prostate Cancer (PCa)
por: Stephan, Carsten, et al.
Publicado: (2014) -
External Validation of an Artificial Neural Network and Two Nomograms for Prostate Cancer Detection
por: Ecke, Thorsten H., et al.
Publicado: (2012) -
Artificial neural network (ANN) velocity better identifies benign prostatic hyperplasia but not prostate cancer compared with PSA velocity
por: Stephan, Carsten, et al.
Publicado: (2008) -
Risk prediction models for biochemical recurrence after radical prostatectomy using prostate-specific antigen and Gleason score
por: Hu, Xin-Hai, et al.
Publicado: (2014) -
Prostate volume and its influence on clinical parameters in prostate cancer detection
por: Stephan, Carsten, et al.
Publicado: (2023)