Cargando…
Testing for genetic trade-offs between early- and late-life reproduction in a wild red deer population
The antagonistic pleiotropy (AP) theory of ageing predicts genetically based trade-offs between investment in reproduction in early life and survival and performance in later life. Laboratory-based research has shown that such genetic trade-offs exist, but little is currently known about their preva...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366114/ https://www.ncbi.nlm.nih.gov/pubmed/18211877 http://dx.doi.org/10.1098/rspb.2007.0986 |
Sumario: | The antagonistic pleiotropy (AP) theory of ageing predicts genetically based trade-offs between investment in reproduction in early life and survival and performance in later life. Laboratory-based research has shown that such genetic trade-offs exist, but little is currently known about their prevalence in natural populations. We used random regression ‘animal model’ techniques to test the genetic basis of trade-offs between early-life fecundity (ELF) and maternal performance in late life in a wild population of red deer (Cervus elaphus) on the Isle of Rum, Scotland. Significant genetic variation for both ageing rates in a key maternal performance measure (offspring birth weight) and ELF was present in this population. We found some evidence for a negative genetic covariance between the rate of ageing in offspring birth weight and ELF, and also for a negative environmental covariance. Our results suggest rare support for the AP theory of ageing from a wild population. |
---|