Cargando…
Nonnegative Matrix Factorization with Gaussian Process Priors
We present a general method for including prior knowledge in a nonnegative matrix factorization (NMF), based on Gaussian process priors. We assume that the nonnegative factors in the NMF are linked by a strictly increasing function to an underlying Gaussian process specified by its covariance functi...
Autores principales: | Schmidt, Mikkel N., Laurberg, Hans |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367383/ https://www.ncbi.nlm.nih.gov/pubmed/18464923 http://dx.doi.org/10.1155/2008/361705 |
Ejemplares similares
-
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Reverse annealing for nonnegative/binary matrix factorization
por: Golden, John, et al.
Publicado: (2021) -
Predicting epileptic seizures using nonnegative matrix factorization
por: Stojanović, Olivera, et al.
Publicado: (2020) -
Sparse nonnegative matrix factorization with ℓ(0)-constraints
por: Peharz, Robert, et al.
Publicado: (2012) -
A flexible R package for nonnegative matrix factorization
por: Gaujoux, Renaud, et al.
Publicado: (2010)