Cargando…

Excessive Islet NO Generation in Type 2 Diabetic GK Rats Coincides with Abnormal Hormone Secretion and Is Counteracted by GLP-1

BACKGROUND: A distinctive feature of type 2 diabetes is inability of insulin-secreting β-cells to properly respond to elevated glucose eventually leading to β-cell failure. We have hypothesized that an abnormally increased NO production in the pancreatic islets might be an important factor in the pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Salehi, Albert, Meidute Abaraviciene, Sandra, Jimenez-Feltstrom, Javier, Östenson, Claes-Göran, Efendic, Suad, Lundquist, Ingmar
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367446/
https://www.ncbi.nlm.nih.gov/pubmed/18478125
http://dx.doi.org/10.1371/journal.pone.0002165
Descripción
Sumario:BACKGROUND: A distinctive feature of type 2 diabetes is inability of insulin-secreting β-cells to properly respond to elevated glucose eventually leading to β-cell failure. We have hypothesized that an abnormally increased NO production in the pancreatic islets might be an important factor in the pathogenesis of β-cell dysfunction. PRINCIPAL FINDINGS: We show now that islets of type 2 spontaneous diabetes in GK rats display excessive NO generation associated with abnormal iNOS expression in insulin and glucagon cells, increased ncNOS activity, impaired glucose-stimulated insulin release, glucagon hypersecretion, and impaired glucose-induced glucagon suppression. Pharmacological blockade of islet NO production by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) greatly improved hormone secretion from GK islets suggesting islet NOS activity being an important target to inactivate for amelioration of islet cell function. The incretin hormone GLP-1, which is used in clinical practice suppressed iNOS and ncNOS expression and activity with almost full restoration of insulin release and partial restoration of glucagon release. GLP-1 suppression of iNOS expression was reversed by PKA inhibition but unaffected by the proteasome inhibitor MG132. Injection of glucose plus GLP-1 in the diabetic rats showed that GLP-1 amplified the insulin response but induced a transient increase and then a poor depression of glucagon. CONCLUSION: The results suggest that abnormally increased NO production within islet cells is a significant player in the pathogenesis of type 2 diabetes being counteracted by GLP-1 through PKA-dependent, nonproteasomal mechanisms.