Cargando…

Power comparison of different methods to detect genetic effects and gene-environment interactions

Identifying gene-environment (G × E) interactions has become a crucial issue in the past decades. Different methods have been proposed to test for G × E interactions in the framework of linkage or association testing. However, their respective performances have rarely been compared. Using Genetic An...

Descripción completa

Detalles Bibliográficos
Autores principales: Kazma, Rémi, Dizier, Marie-Hélène, Guilloud-Bataille, Michel, Bonaïti-Pellié, Catherine, Génin, Emmanuelle
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367459/
https://www.ncbi.nlm.nih.gov/pubmed/18466576
Descripción
Sumario:Identifying gene-environment (G × E) interactions has become a crucial issue in the past decades. Different methods have been proposed to test for G × E interactions in the framework of linkage or association testing. However, their respective performances have rarely been compared. Using Genetic Analysis Workshop 15 simulated data, we compared the power of four methods: one based on affected sib pairs that tests for linkage and interaction (the mean interaction test) and three methods that test for association and/or interaction: a case-control test, a case-only test, and a log-linear approach based on case-parent trios. Results show that for the particular model of interaction between tobacco use and Locus B simulated here, the mean interaction test has poor power to detect either the genetic effect or the interaction. The association studies, i.e., the log-linear-modeling approach and the case-control method, are more powerful to detect the genetic effect (power of 78% and 95%, respectively) and taking into account interaction moderately increases the power (increase of 9% and 3%, respectively). The case-only design exhibits a 95% power to detect G × E interaction but the type I error rate is increased.