Cargando…
Gene × gene and gene × environment interactions for complex disorders
The restricted partition method (RPM) provides a way to detect qualitative factors (e.g. genotypes, environmental exposures) associated with variation in quantitative or binary phenotypes, even if the contribution is predominantly an interaction displaying little or no signal in univariate analyses....
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367466/ https://www.ncbi.nlm.nih.gov/pubmed/18466574 |
Sumario: | The restricted partition method (RPM) provides a way to detect qualitative factors (e.g. genotypes, environmental exposures) associated with variation in quantitative or binary phenotypes, even if the contribution is predominantly an interaction displaying little or no signal in univariate analyses. The RPM provides a model (possibly non-linear) of the relationship between the predictor covariates and the phenotype as well as measures of statistical and clinical significance for the model. Blind to the generating model, we used the RPM to screen a data set consisting 1500 unrelated cases and 2000 unrelated controls from Replicate 1 of the Genetic Analysis Workshop 15 Problem 3 data for genetic and environmental factors contributing to rheumatoid arthritis (RA) risk. Both univariate and pair-wise analyses were performed using sex, smoking, parental DRB1 HLA microsatellite alleles, and 9187 single-nucleotide polymorphisms genotypes from across the genome. With this approach we correctly identified three genetic loci contributing directly to RA risk, and one quantitative trait locus for the endophenotype IgM level. We did not mistakenly identify any factors not in the generating model. All the factors we found were detectable with univariate RPM analyses. We failed to identify two genetic loci modifying the risk of RA. After breaking the blind, we examined the true modeling factors in the first 50 data replicates and found that we would not have identified the additional factors as important even had we combined all the data from the first 50 replicates in a single data set. |
---|