Cargando…

Combining multiple family-based association studies

While high-throughput genotyping technologies are becoming readily available, the merit of using these technologies to perform genome-wide association studies has not been established. One major concern is that for studies of complex diseases and traits, the whole-genome approach requires such large...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Hua, Peng, Jie, Wang, Pei, Coram, Marc, Hsu, Li
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367479/
https://www.ncbi.nlm.nih.gov/pubmed/18466508
Descripción
Sumario:While high-throughput genotyping technologies are becoming readily available, the merit of using these technologies to perform genome-wide association studies has not been established. One major concern is that for studies of complex diseases and traits, the whole-genome approach requires such large sample sizes that both recruitment and genotyping pose considerable challenge. Here we propose a novel statistical method that boosts the effective sample size by combining data obtained from several studies. Specifically, we consider a situation in which various studies have genotyped non-overlapping subjects at largely non-overlapping sets of markers. Our approach, which exploits the local linkage disequilibrium structure without assuming an explicit population model, opens up the possibility of improving statistical power by incorporating existing data into future association studies.