Cargando…
A mixture model approach to multiple testing for the genetic analysis of gene expression
With the availability of very dense genome-wide maps of markers, multiple testing has become a major difficulty for genetic studies. In this context, the false-discovery rate (FDR) and related criteria are widely used. Here, we propose a finite mixture model to estimate the local FDR (lFDR), the FDR...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367480/ https://www.ncbi.nlm.nih.gov/pubmed/18466485 |
_version_ | 1782154301886431232 |
---|---|
author | Dalmasso, Cyril Pickrell, Joseph Tuefferd, Marianne Génin, Emmanuelle Bourgain, Catherine Broët, Philippe |
author_facet | Dalmasso, Cyril Pickrell, Joseph Tuefferd, Marianne Génin, Emmanuelle Bourgain, Catherine Broët, Philippe |
author_sort | Dalmasso, Cyril |
collection | PubMed |
description | With the availability of very dense genome-wide maps of markers, multiple testing has become a major difficulty for genetic studies. In this context, the false-discovery rate (FDR) and related criteria are widely used. Here, we propose a finite mixture model to estimate the local FDR (lFDR), the FDR, and the false non-discovery rate (FNR) in variance-component linkage analysis. Our parametric approach allows empirical estimation of an appropriate null distribution. The contribution of our model to estimation of FDR and related criteria is illustrated on the microarray expression profiles data set provided by the Genetic Analysis Workshop 15 Problem 1. |
format | Text |
id | pubmed-2367480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-23674802008-05-06 A mixture model approach to multiple testing for the genetic analysis of gene expression Dalmasso, Cyril Pickrell, Joseph Tuefferd, Marianne Génin, Emmanuelle Bourgain, Catherine Broët, Philippe BMC Proc Proceedings With the availability of very dense genome-wide maps of markers, multiple testing has become a major difficulty for genetic studies. In this context, the false-discovery rate (FDR) and related criteria are widely used. Here, we propose a finite mixture model to estimate the local FDR (lFDR), the FDR, and the false non-discovery rate (FNR) in variance-component linkage analysis. Our parametric approach allows empirical estimation of an appropriate null distribution. The contribution of our model to estimation of FDR and related criteria is illustrated on the microarray expression profiles data set provided by the Genetic Analysis Workshop 15 Problem 1. BioMed Central 2007-12-18 /pmc/articles/PMC2367480/ /pubmed/18466485 Text en Copyright © 2007 Dalmasso et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Dalmasso, Cyril Pickrell, Joseph Tuefferd, Marianne Génin, Emmanuelle Bourgain, Catherine Broët, Philippe A mixture model approach to multiple testing for the genetic analysis of gene expression |
title | A mixture model approach to multiple testing for the genetic analysis of gene expression |
title_full | A mixture model approach to multiple testing for the genetic analysis of gene expression |
title_fullStr | A mixture model approach to multiple testing for the genetic analysis of gene expression |
title_full_unstemmed | A mixture model approach to multiple testing for the genetic analysis of gene expression |
title_short | A mixture model approach to multiple testing for the genetic analysis of gene expression |
title_sort | mixture model approach to multiple testing for the genetic analysis of gene expression |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367480/ https://www.ncbi.nlm.nih.gov/pubmed/18466485 |
work_keys_str_mv | AT dalmassocyril amixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT pickrelljoseph amixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT tuefferdmarianne amixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT geninemmanuelle amixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT bourgaincatherine amixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT broetphilippe amixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT dalmassocyril mixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT pickrelljoseph mixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT tuefferdmarianne mixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT geninemmanuelle mixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT bourgaincatherine mixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression AT broetphilippe mixturemodelapproachtomultipletestingforthegeneticanalysisofgeneexpression |