Cargando…

Artificial neural networks for linkage analysis of quantitative gene expression phenotypes and evaluation of gene × gene interactions

BACKGROUND: Using single-nucleotide polymorphism (SNP) genotypes and selected gene expression phenotypes from 14 CEPH (Centre d'Etude du Polymorphisme Humain) pedigrees provided for Genetic Analysis Workshop 15 (GAW15), we analyzed quantitative traits with artificial neural networks (ANNs). Our...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ying, Duan, Weimin, Paschall, Justin, Saccone, Nancy L
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367483/
https://www.ncbi.nlm.nih.gov/pubmed/18466546
Descripción
Sumario:BACKGROUND: Using single-nucleotide polymorphism (SNP) genotypes and selected gene expression phenotypes from 14 CEPH (Centre d'Etude du Polymorphisme Humain) pedigrees provided for Genetic Analysis Workshop 15 (GAW15), we analyzed quantitative traits with artificial neural networks (ANNs). Our goals were to identify individual linkage signals and examine gene × gene interactions. First, we used classical multipoint methods to identify phenotypes having nominal linkage evidence at two or more loci. ANNs were then applied to sib-pair identity-by-descent (IBD) allele sharing across the genome as input variables and squared trait sums and differences for the sib pairs as output variables. The weights of the trained networks were analyzed to assess the linkage evidence at each locus as well as potential interactions between them. RESULTS: Loci identified by classical linkage analysis could also be identified by our ANN analysis. However some ANN results were noisy, and our attempts to use cross-validated training to avoid overtraining and thereby improve results were only partially successful. Potential interactions between loci with high-ranked weight measures were also evaluated, with the resulting patterns suggesting existence of both synergistic and antagonistic effects between loci. CONCLUSION: Our results suggest that ANNs can serve as a useful method to analyze quantitative traits and are a potential tool for detecting gene × gene interactions. However, for the approach implemented here, optimizing the ANNs and obtaining stable results remains challenging.