Cargando…

A Bayesian genome-wide linkage analysis of quantitative traits for rheumatoid arthritis via perfect sampling

Rheumatoid arthritis is a complex disease caused by a combination of genetic, environmental, and hormonal factors, and their additive and/or non-additive effects. We performed a linkage analysis to provide evidence of rheumatoid factor IgM on linkage, based on Bayesian variable selection coupled wit...

Descripción completa

Detalles Bibliográficos
Autor principal: Oh, Cheongeun
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367591/
https://www.ncbi.nlm.nih.gov/pubmed/18466451
Descripción
Sumario:Rheumatoid arthritis is a complex disease caused by a combination of genetic, environmental, and hormonal factors, and their additive and/or non-additive effects. We performed a linkage analysis to provide evidence of rheumatoid factor IgM on linkage, based on Bayesian variable selection coupled with the new Haseman-Elston method. For statistical inferences to estimate unknown parameters, we utilized the perfect sampling algorithm, an emerging simulation technique that alleviates concerns over convergence and sampling mixing. Our methods provide powerful and conceptually simple approaches to simultaneous genome scans of main effects and all possible pairwise interactions. We apply them to the Genetic Analysis Workshop 15 data (Problem 2) provided by the North American Rheumatoid Arthritis Consortium (NARAC).