Cargando…

Formyl-methionyl-leucyl-phenylalanine–Induced Dopaminergic Neurotoxicity via Microglial Activation: A Mediator between Peripheral Infection and Neurodegeneration?

BACKGROUND: Parkinson disease (PD), a chronic neurodegenerative disease, has been proposed to be a multifactorial disorder resulting from a combination of environmental mechanisms (chemical, infectious, and traumatic), aging, and genetic deficits. Microglial activation is important in the pathogenes...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Xi, Hu, Xiaoming, Qian, Li, Yang, Sufen, Zhang, Wei, Zhang, Dan, Wu, Xuefei, Fraser, Alison, Wilson, Belinda, Flood, Patrick M, Block, Michelle, Hong, Jau-Shyong
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367670/
https://www.ncbi.nlm.nih.gov/pubmed/18470306
http://dx.doi.org/10.1289/ehp.11031
Descripción
Sumario:BACKGROUND: Parkinson disease (PD), a chronic neurodegenerative disease, has been proposed to be a multifactorial disorder resulting from a combination of environmental mechanisms (chemical, infectious, and traumatic), aging, and genetic deficits. Microglial activation is important in the pathogenesis of PD. OBJECTIVES: We investigated dopaminergic (DA) neurotoxicity and the underlying mechanisms of formyl-methionyl-leucyl-phenylalanine (fMLP), a bacteria-derived peptide, in relation to PD. METHODS: We measured DA neurotoxicity using a DA uptake assay and immunocytochemical staining (ICC) in primary mesencephalic cultures from rodents. Microglial activation was observed via ICC, flow cytometry, and superoxide measurement. RESULTS: fMLP can cause selective DA neuronal loss at concentrations as low as 10(−13) M. Further, fMLP (10(−13) M) led to a significant reduction in DA uptake capacity in neuron/glia (N/G) cultures, but not in microglia-depleted cultures, indicating an indispensable role of microglia in fMLP-induced neurotoxicity. Using ICC of a specific microglial marker, OX42, we observed morphologic changes in activated microglia after fMLP treatment. Microglial activation after fMLP treatment was confirmed by flow cytometry analysis of major histocompatibility antigen class II expression on a microglia HAPI cell line. Mechanistic studies revealed that fMLP (10(−13) M)-induced increase in the production of extracellular superoxide from microglia is critical in mediating fMLP-elicited neurotoxicity. Pharmacologic inhibition of NADPH oxidase (PHOX) with diphenylene-iodonium or apocynin abolished the DA neurotoxicity of fMLP. N/G cultures from PHOX-deficient (gp91(PHOX−/ −)) mice were also insensitive to fMLP-induced DA neurotoxicity. CONCLUSION: fMLP (10(−13) M) induces DA neurotoxicity through activation of microglial PHOX and subsequent production of superoxide, suggesting a role of fMLP in the central nervous system inflammatory process.