Cargando…

Type I phosphatidylinositol 4-phosphate 5-kinase controls neutrophil polarity and directional movement

Directional cell movement in response to external chemical gradients requires establishment of front–rear asymmetry, which distinguishes an up-gradient protrusive leading edge, where Rac-induced F-actin polymerization takes place, and a down-gradient retractile tail (uropod in leukocytes), where Rho...

Descripción completa

Detalles Bibliográficos
Autores principales: Lacalle, Rosa Ana, Peregil, Rosa M., Albar, Juan Pablo, Merino, Ernesto, Martínez-A, Carlos, Mérida, Isabel, Mañes, Santos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373511/
https://www.ncbi.nlm.nih.gov/pubmed/18158329
http://dx.doi.org/10.1083/jcb.200705044
Descripción
Sumario:Directional cell movement in response to external chemical gradients requires establishment of front–rear asymmetry, which distinguishes an up-gradient protrusive leading edge, where Rac-induced F-actin polymerization takes place, and a down-gradient retractile tail (uropod in leukocytes), where RhoA-mediated actomyosin contraction occurs. The signals that govern this spatial and functional asymmetry are not entirely understood. We show that the human type I phosphatidylinositol 4-phosphate 5-kinase isoform β (PIPKIβ) has a role in organizing signaling at the cell rear. We found that PIPKIβ polarized at the uropod of neutrophil-differentiated HL60 cells. PIPKIβ localization was independent of its lipid kinase activity, but required the 83 C-terminal amino acids, which are not homologous to other PIPKI isoforms. The PIPKIβ C terminus interacted with EBP50 (4.1-ezrin-radixin-moesin (ERM)-binding phosphoprotein 50), which enabled further interactions with ERM proteins and the Rho-GDP dissociation inhibitor (RhoGDI). Knockdown of PIPKIβ with siRNA inhibited cell polarization and impaired cell directionality during dHL60 chemotaxis, suggesting a role for PIPKIβ in these processes.