Cargando…
The molecular genetics of cervical carcinoma
In the pathogenesis of cervical carcinoma there are three major components, two of them related to the role of human papillomaviruses (HPV). First, the effect of viral E6 and E7 proteins. Second, the integration of viral DNA in chromosomal regions associated with well known tumour phenotypes. Some o...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374277/ https://www.ncbi.nlm.nih.gov/pubmed/10471054 http://dx.doi.org/10.1038/sj.bjc.6690635 |
_version_ | 1782154415022538752 |
---|---|
author | Lazo, P A |
author_facet | Lazo, P A |
author_sort | Lazo, P A |
collection | PubMed |
description | In the pathogenesis of cervical carcinoma there are three major components, two of them related to the role of human papillomaviruses (HPV). First, the effect of viral E6 and E7 proteins. Second, the integration of viral DNA in chromosomal regions associated with well known tumour phenotypes. Some of these viral integrations occur recurrently at specific chromosomal locations, such as 8q24 and 12q15, both harbouring HPV18 and HPV16. And third, there are other recurrent genetic alterations not linked to HPV. Recurrent losses of heterozygosity (LOH) have been detected in chromosome regions 3p14–22, 4p16, 5p15, 6p21–22, 11q23, 17p13.3 without effect on p53, 18q12–22 and 19q13, all of them suggesting the alteration of putative tumour suppressor genes not yet identified. Recurrent amplification has been mapped to 3q+ arm, with the common region in 3q24–28 in 90% of invasive carcinomas. The mutator phenotype, microsatellite instability, plays a minor role and is detected in only 7% of cervical carcinomas. The development of cervical carcinoma requires the sequential occurrence and selection of several genetic alterations. The identification of the specific genes involved, and their correlation with specific tumour properties and stages could improve the understanding and perhaps the management of cervical carcinoma. © 1999 Cancer Research Campaign |
format | Text |
id | pubmed-2374277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1999 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-23742772009-09-10 The molecular genetics of cervical carcinoma Lazo, P A Br J Cancer Regular Article In the pathogenesis of cervical carcinoma there are three major components, two of them related to the role of human papillomaviruses (HPV). First, the effect of viral E6 and E7 proteins. Second, the integration of viral DNA in chromosomal regions associated with well known tumour phenotypes. Some of these viral integrations occur recurrently at specific chromosomal locations, such as 8q24 and 12q15, both harbouring HPV18 and HPV16. And third, there are other recurrent genetic alterations not linked to HPV. Recurrent losses of heterozygosity (LOH) have been detected in chromosome regions 3p14–22, 4p16, 5p15, 6p21–22, 11q23, 17p13.3 without effect on p53, 18q12–22 and 19q13, all of them suggesting the alteration of putative tumour suppressor genes not yet identified. Recurrent amplification has been mapped to 3q+ arm, with the common region in 3q24–28 in 90% of invasive carcinomas. The mutator phenotype, microsatellite instability, plays a minor role and is detected in only 7% of cervical carcinomas. The development of cervical carcinoma requires the sequential occurrence and selection of several genetic alterations. The identification of the specific genes involved, and their correlation with specific tumour properties and stages could improve the understanding and perhaps the management of cervical carcinoma. © 1999 Cancer Research Campaign Nature Publishing Group 1999-08 /pmc/articles/PMC2374277/ /pubmed/10471054 http://dx.doi.org/10.1038/sj.bjc.6690635 Text en Copyright © 1999 Cancer Research Campaign https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Regular Article Lazo, P A The molecular genetics of cervical carcinoma |
title | The molecular genetics of cervical carcinoma |
title_full | The molecular genetics of cervical carcinoma |
title_fullStr | The molecular genetics of cervical carcinoma |
title_full_unstemmed | The molecular genetics of cervical carcinoma |
title_short | The molecular genetics of cervical carcinoma |
title_sort | molecular genetics of cervical carcinoma |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374277/ https://www.ncbi.nlm.nih.gov/pubmed/10471054 http://dx.doi.org/10.1038/sj.bjc.6690635 |
work_keys_str_mv | AT lazopa themoleculargeneticsofcervicalcarcinoma AT lazopa moleculargeneticsofcervicalcarcinoma |