Cargando…
SDED: A novel filter method for cancer-related gene selection
Gene selection is to detect the most significantly expressed genes under different conditions expression data. The current challenge in gene selection is the comparison of a large number of genes with limited patient samples. Thus it is trivial task in simple statistical analysis. Various statistica...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374374/ https://www.ncbi.nlm.nih.gov/pubmed/18478083 |
_version_ | 1782154438412075008 |
---|---|
author | Xu, Wenlong Wang, Minghui Zhang, Xianghua Wang, Lirong Feng, Huanqing |
author_facet | Xu, Wenlong Wang, Minghui Zhang, Xianghua Wang, Lirong Feng, Huanqing |
author_sort | Xu, Wenlong |
collection | PubMed |
description | Gene selection is to detect the most significantly expressed genes under different conditions expression data. The current challenge in gene selection is the comparison of a large number of genes with limited patient samples. Thus it is trivial task in simple statistical analysis. Various statistical measurements are adopted by filter methods applied in gene selection studies. Their ability to discriminate phenotypes is crucial in classification and selection. Here we describe the standard deviation error distribution (SDED) method for gene selection. It utilizes variations within-class and among-class in gene expression data. We tested the method using 4 leukemia datasets available in the public domain. The method was compared with the GS2 and CHO methods. The Prediction accuracies by SDED are better than both GS2 and CHO for different datasets. These are 0.8-4.2% and 1.6-8.4% more that in GS2 and CHO. The related OMIM annotations and KEGG pathways analyses verified that SDED can pick out more 4.0% and 6.1% genes with biological significance than GS2 and CHO, respectively. |
format | Text |
id | pubmed-2374374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Biomedical Informatics Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-23743742008-05-13 SDED: A novel filter method for cancer-related gene selection Xu, Wenlong Wang, Minghui Zhang, Xianghua Wang, Lirong Feng, Huanqing Bioinformation Hypothesis Gene selection is to detect the most significantly expressed genes under different conditions expression data. The current challenge in gene selection is the comparison of a large number of genes with limited patient samples. Thus it is trivial task in simple statistical analysis. Various statistical measurements are adopted by filter methods applied in gene selection studies. Their ability to discriminate phenotypes is crucial in classification and selection. Here we describe the standard deviation error distribution (SDED) method for gene selection. It utilizes variations within-class and among-class in gene expression data. We tested the method using 4 leukemia datasets available in the public domain. The method was compared with the GS2 and CHO methods. The Prediction accuracies by SDED are better than both GS2 and CHO for different datasets. These are 0.8-4.2% and 1.6-8.4% more that in GS2 and CHO. The related OMIM annotations and KEGG pathways analyses verified that SDED can pick out more 4.0% and 6.1% genes with biological significance than GS2 and CHO, respectively. Biomedical Informatics Publishing Group 2008-04-11 /pmc/articles/PMC2374374/ /pubmed/18478083 Text en © 2008 Biomedical Informatics Publishing Group This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited. |
spellingShingle | Hypothesis Xu, Wenlong Wang, Minghui Zhang, Xianghua Wang, Lirong Feng, Huanqing SDED: A novel filter method for cancer-related gene selection |
title | SDED: A novel filter method for cancer-related gene selection |
title_full | SDED: A novel filter method for cancer-related gene selection |
title_fullStr | SDED: A novel filter method for cancer-related gene selection |
title_full_unstemmed | SDED: A novel filter method for cancer-related gene selection |
title_short | SDED: A novel filter method for cancer-related gene selection |
title_sort | sded: a novel filter method for cancer-related gene selection |
topic | Hypothesis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374374/ https://www.ncbi.nlm.nih.gov/pubmed/18478083 |
work_keys_str_mv | AT xuwenlong sdedanovelfiltermethodforcancerrelatedgeneselection AT wangminghui sdedanovelfiltermethodforcancerrelatedgeneselection AT zhangxianghua sdedanovelfiltermethodforcancerrelatedgeneselection AT wanglirong sdedanovelfiltermethodforcancerrelatedgeneselection AT fenghuanqing sdedanovelfiltermethodforcancerrelatedgeneselection |