Cargando…

Increased expression of HGF and c-met in rat small intestine during recovery from methotrexate-induced mucositis

Chemotherapy or radiotherapy often cause mucosal damage in the gut (gut mucositis) in cancer patients. As a step to investigate mechanisms underlying subsequent intestinal repair, we have examined the expression profiles of hepatocyte growth factor (HGF) and its receptor c-met, two molecules previou...

Descripción completa

Detalles Bibliográficos
Autores principales: Xian, C J, Couper, R, Howarth, G S, Read, L C, Kallincos, N C
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374397/
https://www.ncbi.nlm.nih.gov/pubmed/10732770
http://dx.doi.org/10.1054/bjoc.1999.1023
Descripción
Sumario:Chemotherapy or radiotherapy often cause mucosal damage in the gut (gut mucositis) in cancer patients. As a step to investigate mechanisms underlying subsequent intestinal repair, we have examined the expression profiles of hepatocyte growth factor (HGF) and its receptor c-met, two molecules previously implicated in tissue repair, in comparison to the histopathological and proliferative changes in a rat model of methotrexate-induced small intestinal mucositis. Histological analysis of the intestinal specimens revealed crypt loss and villus atrophy with damage maximal on day 5 after methotrexate injection, and normalization of mucosal structure commencing on day 6. Crypt cell proliferation was decreased dramatically on day 3, normalized on day 4 and up-regulated on days 5 and 6. HGF and c-met protein/mRNA expression was up-regulated between days 4 and 7, with the mRNA co-localizing to the crypt and lower villus epithelium. Therefore, following methotrexate injection, a decrease in crypt cell proliferation preceded histological damage, and conversely, crypt cell hyperproliferation preceded mucosal regeneration. Up-regulation of HGF and c-met coincided with crypt hyperproliferation and mucosal recovery, suggesting a role for HGF in intestinal repair following acute injury. The crypt epithelial localization of HGF and c-met implies an autocrine or paracrine mechanism of HGF action. © 2000 Cancer Research Campaign