Cargando…
Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia
INTRODUCTION: Arginine vasopressin (AVP) is increasingly used to restore mean arterial pressure (MAP) in low-pressure shock states unresponsive to conventional inotropes. This is potentially deleterious since AVP is also known to reduce cardiac output by increasing vascular resistance. The effects o...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374634/ https://www.ncbi.nlm.nih.gov/pubmed/18291025 http://dx.doi.org/10.1186/cc6794 |
_version_ | 1782154499802005504 |
---|---|
author | Müller, Stig How, Ole-Jakob Hermansen, Stig Eggen Stenberg, Thor Allan Sager, Georg Myrmel, Truls |
author_facet | Müller, Stig How, Ole-Jakob Hermansen, Stig Eggen Stenberg, Thor Allan Sager, Georg Myrmel, Truls |
author_sort | Müller, Stig |
collection | PubMed |
description | INTRODUCTION: Arginine vasopressin (AVP) is increasingly used to restore mean arterial pressure (MAP) in low-pressure shock states unresponsive to conventional inotropes. This is potentially deleterious since AVP is also known to reduce cardiac output by increasing vascular resistance. The effects of AVP on blood flow to vital organs and cardiac performance in a circulation altered by cardiac ischemia are still not sufficiently clarified. We hypothesised that restoring MAP by low dose, therapeutic level AVP would reduce vital organ blood flow in a setting of experimental acute left ventricular dysfunction. METHODS: Cardiac output (CO) and arterial blood flow to the brain, heart, kidney and liver were measured in nine pigs using transit-time flow probes. Left ventricular pressure-volume catheter and central arterial and venous catheters were used for haemodynamic recordings and blood sampling. Transient left ventricular ischemia was induced by intermittent left coronary occlusions resulting in a 17% reduction in cardiac output and a drop in MAP from 87 ± 3 to 67 ± 4 mmHg (p < 0.001). A low-dose therapeutic level of AVP (0.005 U/kg/min) was used to restore MAP to pre-ischemic values (93 ± 4 mmHg). RESULTS: AVP further impaired systemic perfusion (CO and brain, heart and kidney blood flow reduced by 29, 18, 23 and 34%, respectively) due to a 2.0-, 2.2-, 1.9- and 2.1-fold increase in systemic, brain, heart and kidney specific vascular resistances. The hypoperfusion induced by AVP was associated with an increased systemic oxygen extraction. Oxygen saturation in blood drawn from the great cardiac vein fell from 29 ± 1 to 21 ± 3% (p = 0.01). Finally, these effects were reversed 40 min after AVP was withdrawn. CONCLUSION: Low dose AVP induced a pronounced reduction in vital organ blood flow in pigs after transient cardiac ischemia. This indicates a potentially deleterious effect of AVP in patients with heart failure or cardiogenic shock due to impaired coronary perfusion. |
format | Text |
id | pubmed-2374634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-23746342008-05-09 Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia Müller, Stig How, Ole-Jakob Hermansen, Stig Eggen Stenberg, Thor Allan Sager, Georg Myrmel, Truls Crit Care Research INTRODUCTION: Arginine vasopressin (AVP) is increasingly used to restore mean arterial pressure (MAP) in low-pressure shock states unresponsive to conventional inotropes. This is potentially deleterious since AVP is also known to reduce cardiac output by increasing vascular resistance. The effects of AVP on blood flow to vital organs and cardiac performance in a circulation altered by cardiac ischemia are still not sufficiently clarified. We hypothesised that restoring MAP by low dose, therapeutic level AVP would reduce vital organ blood flow in a setting of experimental acute left ventricular dysfunction. METHODS: Cardiac output (CO) and arterial blood flow to the brain, heart, kidney and liver were measured in nine pigs using transit-time flow probes. Left ventricular pressure-volume catheter and central arterial and venous catheters were used for haemodynamic recordings and blood sampling. Transient left ventricular ischemia was induced by intermittent left coronary occlusions resulting in a 17% reduction in cardiac output and a drop in MAP from 87 ± 3 to 67 ± 4 mmHg (p < 0.001). A low-dose therapeutic level of AVP (0.005 U/kg/min) was used to restore MAP to pre-ischemic values (93 ± 4 mmHg). RESULTS: AVP further impaired systemic perfusion (CO and brain, heart and kidney blood flow reduced by 29, 18, 23 and 34%, respectively) due to a 2.0-, 2.2-, 1.9- and 2.1-fold increase in systemic, brain, heart and kidney specific vascular resistances. The hypoperfusion induced by AVP was associated with an increased systemic oxygen extraction. Oxygen saturation in blood drawn from the great cardiac vein fell from 29 ± 1 to 21 ± 3% (p = 0.01). Finally, these effects were reversed 40 min after AVP was withdrawn. CONCLUSION: Low dose AVP induced a pronounced reduction in vital organ blood flow in pigs after transient cardiac ischemia. This indicates a potentially deleterious effect of AVP in patients with heart failure or cardiogenic shock due to impaired coronary perfusion. BioMed Central 2008 2008-02-21 /pmc/articles/PMC2374634/ /pubmed/18291025 http://dx.doi.org/10.1186/cc6794 Text en Copyright © 2008 Müller et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Müller, Stig How, Ole-Jakob Hermansen, Stig Eggen Stenberg, Thor Allan Sager, Georg Myrmel, Truls Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia |
title | Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia |
title_full | Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia |
title_fullStr | Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia |
title_full_unstemmed | Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia |
title_short | Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia |
title_sort | vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374634/ https://www.ncbi.nlm.nih.gov/pubmed/18291025 http://dx.doi.org/10.1186/cc6794 |
work_keys_str_mv | AT mullerstig vasopressinimpairsbrainheartandkidneyperfusionanexperimentalstudyinpigsaftertransientmyocardialischemia AT howolejakob vasopressinimpairsbrainheartandkidneyperfusionanexperimentalstudyinpigsaftertransientmyocardialischemia AT hermansenstigeggen vasopressinimpairsbrainheartandkidneyperfusionanexperimentalstudyinpigsaftertransientmyocardialischemia AT stenbergthorallan vasopressinimpairsbrainheartandkidneyperfusionanexperimentalstudyinpigsaftertransientmyocardialischemia AT sagergeorg vasopressinimpairsbrainheartandkidneyperfusionanexperimentalstudyinpigsaftertransientmyocardialischemia AT myrmeltruls vasopressinimpairsbrainheartandkidneyperfusionanexperimentalstudyinpigsaftertransientmyocardialischemia |