Cargando…

Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells

BACKGROUND: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-s...

Descripción completa

Detalles Bibliográficos
Autores principales: Rines, Daniel R, Gomez-Ferreria, Maria Ana, Zhou, Yingyao, DeJesus, Paul, Grob, Seanna, Batalov, Serge, Labow, Marc, Huesken, Dieter, Mickanin, Craig, Hall, Jonathan, Reinhardt, Mischa, Natt, Francois, Lange, Joerg, Sharp, David J, Chanda, Sumit K, Caldwell, Jeremy S
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374723/
https://www.ncbi.nlm.nih.gov/pubmed/18302737
http://dx.doi.org/10.1186/gb-2008-9-2-r44
_version_ 1782154520942346240
author Rines, Daniel R
Gomez-Ferreria, Maria Ana
Zhou, Yingyao
DeJesus, Paul
Grob, Seanna
Batalov, Serge
Labow, Marc
Huesken, Dieter
Mickanin, Craig
Hall, Jonathan
Reinhardt, Mischa
Natt, Francois
Lange, Joerg
Sharp, David J
Chanda, Sumit K
Caldwell, Jeremy S
author_facet Rines, Daniel R
Gomez-Ferreria, Maria Ana
Zhou, Yingyao
DeJesus, Paul
Grob, Seanna
Batalov, Serge
Labow, Marc
Huesken, Dieter
Mickanin, Craig
Hall, Jonathan
Reinhardt, Mischa
Natt, Francois
Lange, Joerg
Sharp, David J
Chanda, Sumit K
Caldwell, Jeremy S
author_sort Rines, Daniel R
collection PubMed
description BACKGROUND: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase. RESULTS: Here we report the identification of genes that, when suppressed, result in structural defects in the mitotic spindle leading to bent, twisted, monopolar, or multipolar spindles, and cause cell cycle arrest. We further describe a novel analysis methodology for large-scale RNA interference datasets that relies on supervised clustering of these genes based on Gene Ontology, protein families, tissue expression, and protein-protein interactions. CONCLUSION: This approach was utilized to classify functionally the identified genes in discrete mitotic processes. We confirmed the identity for a subset of these genes and examined more closely their mechanical role in spindle architecture.
format Text
id pubmed-2374723
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-23747232008-05-09 Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells Rines, Daniel R Gomez-Ferreria, Maria Ana Zhou, Yingyao DeJesus, Paul Grob, Seanna Batalov, Serge Labow, Marc Huesken, Dieter Mickanin, Craig Hall, Jonathan Reinhardt, Mischa Natt, Francois Lange, Joerg Sharp, David J Chanda, Sumit K Caldwell, Jeremy S Genome Biol Research BACKGROUND: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase. RESULTS: Here we report the identification of genes that, when suppressed, result in structural defects in the mitotic spindle leading to bent, twisted, monopolar, or multipolar spindles, and cause cell cycle arrest. We further describe a novel analysis methodology for large-scale RNA interference datasets that relies on supervised clustering of these genes based on Gene Ontology, protein families, tissue expression, and protein-protein interactions. CONCLUSION: This approach was utilized to classify functionally the identified genes in discrete mitotic processes. We confirmed the identity for a subset of these genes and examined more closely their mechanical role in spindle architecture. BioMed Central 2008 2008-02-26 /pmc/articles/PMC2374723/ /pubmed/18302737 http://dx.doi.org/10.1186/gb-2008-9-2-r44 Text en Copyright © 2008 Rines et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Rines, Daniel R
Gomez-Ferreria, Maria Ana
Zhou, Yingyao
DeJesus, Paul
Grob, Seanna
Batalov, Serge
Labow, Marc
Huesken, Dieter
Mickanin, Craig
Hall, Jonathan
Reinhardt, Mischa
Natt, Francois
Lange, Joerg
Sharp, David J
Chanda, Sumit K
Caldwell, Jeremy S
Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells
title Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells
title_full Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells
title_fullStr Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells
title_full_unstemmed Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells
title_short Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells
title_sort whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374723/
https://www.ncbi.nlm.nih.gov/pubmed/18302737
http://dx.doi.org/10.1186/gb-2008-9-2-r44
work_keys_str_mv AT rinesdanielr wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT gomezferreriamariaana wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT zhouyingyao wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT dejesuspaul wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT grobseanna wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT batalovserge wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT labowmarc wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT hueskendieter wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT mickanincraig wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT halljonathan wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT reinhardtmischa wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT nattfrancois wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT langejoerg wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT sharpdavidj wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT chandasumitk wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells
AT caldwelljeremys wholegenomefunctionalanalysisidentifiesnovelcomponentsrequiredformitoticspindleintegrityinhumancells