Cargando…

Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry

BACKGROUND: The purpose of this study was to assess the feasibility of conducting biological tetrachloroethylene (perchloroethylene, PCE) exposure assessments of dry cleaning employees in conjunction with evaluation of possible PCE health effects. METHODS: Eighteen women from four dry cleaning facil...

Descripción completa

Detalles Bibliográficos
Autores principales: McKernan, Lauralynn T, Ruder, Avima M, Petersen, Martin R, Hein, Misty J, Forrester, Christy L, Sanderson, Wayne T, Ashley, David L, Butler, Mary A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374777/
https://www.ncbi.nlm.nih.gov/pubmed/18412959
http://dx.doi.org/10.1186/1476-069X-7-12
_version_ 1782154524687859712
author McKernan, Lauralynn T
Ruder, Avima M
Petersen, Martin R
Hein, Misty J
Forrester, Christy L
Sanderson, Wayne T
Ashley, David L
Butler, Mary A
author_facet McKernan, Lauralynn T
Ruder, Avima M
Petersen, Martin R
Hein, Misty J
Forrester, Christy L
Sanderson, Wayne T
Ashley, David L
Butler, Mary A
author_sort McKernan, Lauralynn T
collection PubMed
description BACKGROUND: The purpose of this study was to assess the feasibility of conducting biological tetrachloroethylene (perchloroethylene, PCE) exposure assessments of dry cleaning employees in conjunction with evaluation of possible PCE health effects. METHODS: Eighteen women from four dry cleaning facilities in southwestern Ohio were monitored in a pilot study of workers with PCE exposure. Personal breathing zone samples were collected from each employee on two consecutive work days. Biological monitoring included a single measurement of PCE in blood and multiple measurements of pre- and post-shift PCE in exhaled breath and trichloroacetic acid (TCA) in urine. RESULTS: Post-shift PCE in exhaled breath gradually increased throughout the work week. Statistically significant correlations were observed among the exposure indices. Decreases in PCE in exhaled breath and TCA in urine were observed after two days without exposure to PCE. A mixed-effects model identified statistically significant associations between PCE in exhaled breath and airborne PCE time weighted average (TWA) after adjusting for a random participant effect and fixed effects of time and body mass index. CONCLUSION: Although comprehensive, our sampling strategy was challenging to implement due to fluctuating work schedules and the number (pre- and post-shift on three consecutive days) and multiplicity (air, blood, exhaled breath, and urine) of samples collected. PCE in blood is the preferred biological index to monitor exposures, but may make recruitment difficult. PCE TWA sampling is an appropriate surrogate, although more field intensive. Repeated measures of exposure and mixed-effects modeling may be required for future studies due to high within-subject variability. Workers should be monitored over a long enough period of time to allow the use of a lag term.
format Text
id pubmed-2374777
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-23747772008-05-09 Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry McKernan, Lauralynn T Ruder, Avima M Petersen, Martin R Hein, Misty J Forrester, Christy L Sanderson, Wayne T Ashley, David L Butler, Mary A Environ Health Research BACKGROUND: The purpose of this study was to assess the feasibility of conducting biological tetrachloroethylene (perchloroethylene, PCE) exposure assessments of dry cleaning employees in conjunction with evaluation of possible PCE health effects. METHODS: Eighteen women from four dry cleaning facilities in southwestern Ohio were monitored in a pilot study of workers with PCE exposure. Personal breathing zone samples were collected from each employee on two consecutive work days. Biological monitoring included a single measurement of PCE in blood and multiple measurements of pre- and post-shift PCE in exhaled breath and trichloroacetic acid (TCA) in urine. RESULTS: Post-shift PCE in exhaled breath gradually increased throughout the work week. Statistically significant correlations were observed among the exposure indices. Decreases in PCE in exhaled breath and TCA in urine were observed after two days without exposure to PCE. A mixed-effects model identified statistically significant associations between PCE in exhaled breath and airborne PCE time weighted average (TWA) after adjusting for a random participant effect and fixed effects of time and body mass index. CONCLUSION: Although comprehensive, our sampling strategy was challenging to implement due to fluctuating work schedules and the number (pre- and post-shift on three consecutive days) and multiplicity (air, blood, exhaled breath, and urine) of samples collected. PCE in blood is the preferred biological index to monitor exposures, but may make recruitment difficult. PCE TWA sampling is an appropriate surrogate, although more field intensive. Repeated measures of exposure and mixed-effects modeling may be required for future studies due to high within-subject variability. Workers should be monitored over a long enough period of time to allow the use of a lag term. BioMed Central 2008-04-15 /pmc/articles/PMC2374777/ /pubmed/18412959 http://dx.doi.org/10.1186/1476-069X-7-12 Text en Copyright © 2008 McKernan et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
McKernan, Lauralynn T
Ruder, Avima M
Petersen, Martin R
Hein, Misty J
Forrester, Christy L
Sanderson, Wayne T
Ashley, David L
Butler, Mary A
Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry
title Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry
title_full Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry
title_fullStr Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry
title_full_unstemmed Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry
title_short Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry
title_sort biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374777/
https://www.ncbi.nlm.nih.gov/pubmed/18412959
http://dx.doi.org/10.1186/1476-069X-7-12
work_keys_str_mv AT mckernanlauralynnt biologicalexposureassessmenttotetrachloroethyleneforworkersinthedrycleaningindustry
AT ruderavimam biologicalexposureassessmenttotetrachloroethyleneforworkersinthedrycleaningindustry
AT petersenmartinr biologicalexposureassessmenttotetrachloroethyleneforworkersinthedrycleaningindustry
AT heinmistyj biologicalexposureassessmenttotetrachloroethyleneforworkersinthedrycleaningindustry
AT forresterchristyl biologicalexposureassessmenttotetrachloroethyleneforworkersinthedrycleaningindustry
AT sandersonwaynet biologicalexposureassessmenttotetrachloroethyleneforworkersinthedrycleaningindustry
AT ashleydavidl biologicalexposureassessmenttotetrachloroethyleneforworkersinthedrycleaningindustry
AT butlermarya biologicalexposureassessmenttotetrachloroethyleneforworkersinthedrycleaningindustry