Cargando…
Coverage and error models of protein-protein interaction data by directed graph analysis
Using a directed graph model for bait to prey systems and a multinomial error model, we assessed the error statistics in all published large-scale datasets for Saccharomyces cerevisiae and characterized them by three traits: the set of tested interactions, artifacts that lead to false-positive or fa...
Autores principales: | Chiang, Tony, Scholtens, Denise, Sarkar, Deepayan, Gentleman, Robert, Huber, Wolfgang |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375024/ https://www.ncbi.nlm.nih.gov/pubmed/17845715 http://dx.doi.org/10.1186/gb-2007-8-9-r186 |
Ejemplares similares
-
A directed acyclic graph for interactions
por: Nilsson, Anton, et al.
Publicado: (2020) -
Making the most of high-throughput protein-interaction data
por: Gentleman, Robert, et al.
Publicado: (2007) -
GraphProt: modeling binding preferences of RNA-binding proteins
por: Maticzka, Daniel, et al.
Publicado: (2014) -
GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data
por: Yuan, Ye, et al.
Publicado: (2020) -
Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks
por: Sannino, Speranza, et al.
Publicado: (2017)