Cargando…

The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data

Interpretation of microarray data remains a challenge, and most methods fail to consider the complex, nonlinear regulation of gene expression. To address that limitation, we introduce Learner of Functional Enrichment (LeFE), a statistical/machine learning algorithm based on Random Forest, and demons...

Descripción completa

Detalles Bibliográficos
Autores principales: Eichler, Gabriel S, Reimers, Mark, Kane, David, Weinstein, John N
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375025/
https://www.ncbi.nlm.nih.gov/pubmed/17845722
http://dx.doi.org/10.1186/gb-2007-8-9-r187
_version_ 1782154561705738240
author Eichler, Gabriel S
Reimers, Mark
Kane, David
Weinstein, John N
author_facet Eichler, Gabriel S
Reimers, Mark
Kane, David
Weinstein, John N
author_sort Eichler, Gabriel S
collection PubMed
description Interpretation of microarray data remains a challenge, and most methods fail to consider the complex, nonlinear regulation of gene expression. To address that limitation, we introduce Learner of Functional Enrichment (LeFE), a statistical/machine learning algorithm based on Random Forest, and demonstrate it on several diverse datasets: smoker/never smoker, breast cancer classification, and cancer drug sensitivity. We also compare it with previously published algorithms, including Gene Set Enrichment Analysis. LeFE regularly identifies statistically significant functional themes consistent with known biology.
format Text
id pubmed-2375025
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-23750252008-05-12 The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data Eichler, Gabriel S Reimers, Mark Kane, David Weinstein, John N Genome Biol Method Interpretation of microarray data remains a challenge, and most methods fail to consider the complex, nonlinear regulation of gene expression. To address that limitation, we introduce Learner of Functional Enrichment (LeFE), a statistical/machine learning algorithm based on Random Forest, and demonstrate it on several diverse datasets: smoker/never smoker, breast cancer classification, and cancer drug sensitivity. We also compare it with previously published algorithms, including Gene Set Enrichment Analysis. LeFE regularly identifies statistically significant functional themes consistent with known biology. BioMed Central 2007 2007-09-10 /pmc/articles/PMC2375025/ /pubmed/17845722 http://dx.doi.org/10.1186/gb-2007-8-9-r187 Text en Copyright © 2007 Eichler et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method
Eichler, Gabriel S
Reimers, Mark
Kane, David
Weinstein, John N
The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data
title The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data
title_full The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data
title_fullStr The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data
title_full_unstemmed The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data
title_short The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data
title_sort lefe algorithm: embracing the complexity of gene expression in the interpretation of microarray data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375025/
https://www.ncbi.nlm.nih.gov/pubmed/17845722
http://dx.doi.org/10.1186/gb-2007-8-9-r187
work_keys_str_mv AT eichlergabriels thelefealgorithmembracingthecomplexityofgeneexpressionintheinterpretationofmicroarraydata
AT reimersmark thelefealgorithmembracingthecomplexityofgeneexpressionintheinterpretationofmicroarraydata
AT kanedavid thelefealgorithmembracingthecomplexityofgeneexpressionintheinterpretationofmicroarraydata
AT weinsteinjohnn thelefealgorithmembracingthecomplexityofgeneexpressionintheinterpretationofmicroarraydata
AT eichlergabriels lefealgorithmembracingthecomplexityofgeneexpressionintheinterpretationofmicroarraydata
AT reimersmark lefealgorithmembracingthecomplexityofgeneexpressionintheinterpretationofmicroarraydata
AT kanedavid lefealgorithmembracingthecomplexityofgeneexpressionintheinterpretationofmicroarraydata
AT weinsteinjohnn lefealgorithmembracingthecomplexityofgeneexpressionintheinterpretationofmicroarraydata