Cargando…
The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data
Interpretation of microarray data remains a challenge, and most methods fail to consider the complex, nonlinear regulation of gene expression. To address that limitation, we introduce Learner of Functional Enrichment (LeFE), a statistical/machine learning algorithm based on Random Forest, and demons...
Autores principales: | Eichler, Gabriel S, Reimers, Mark, Kane, David, Weinstein, John N |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375025/ https://www.ncbi.nlm.nih.gov/pubmed/17845722 http://dx.doi.org/10.1186/gb-2007-8-9-r187 |
Ejemplares similares
-
SPACE: an algorithm to predict and quantify alternatively spliced isoforms using microarrays
por: Anton, Miguel A, et al.
Publicado: (2008) -
A Network Partition Algorithm for Mining Gene Functional Modules of Colon Cancer from DNA Microarray Data
por: Ruan, Xiao-Gang, et al.
Publicado: (2006) -
ProCAT: a data analysis approach for protein microarrays
por: Zhu, Xiaowei, et al.
Publicado: (2006) -
Improved Algorithmic Complexity for the 3SEQ Recombination Detection Algorithm
por: Lam, Ha Minh, et al.
Publicado: (2018) -
I3: A Self-organising Learning Workflow for Intuitive Integrative Interpretation of Complex Genetic Data
por: Tan, Yun, et al.
Publicado: (2019)