Cargando…
Identification of novel stem cell markers using gap analysis of gene expression data
We describe a method for detecting marker genes in large heterogeneous collections of gene expression data. Markers are identified and characterized by the existence of demarcations in their expression values across the whole dataset, which suggest the presence of groupings of samples. We apply this...
Autores principales: | Krzyzanowski, Paul M, Andrade-Navarro, Miguel A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375031/ https://www.ncbi.nlm.nih.gov/pubmed/17875203 http://dx.doi.org/10.1186/gb-2007-8-9-r193 |
Ejemplares similares
-
Computational identification of cell-specific variable regions in ChIP-seq data
por: Andreani, Tommaso, et al.
Publicado: (2020) -
Identification of microRNA-regulated gene networks by expression analysis of target genes
por: Gennarino, Vincenzo Alessandro, et al.
Publicado: (2012) -
Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data
por: Fernandez-Cuesta, Lynnette, et al.
Publicado: (2015) -
Identification of phenotype-specific networks from paired gene expression–cell shape imaging data
por: Barker, Charlie George, et al.
Publicado: (2022) -
Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
por: Rapaport, Franck, et al.
Publicado: (2013)