Cargando…
A simplified approach to disulfide connectivity prediction from protein sequences
BACKGROUND: Prediction of disulfide bridges from protein sequences is useful for characterizing structural and functional properties of proteins. Several methods based on different machine learning algorithms have been applied to solve this problem and public domain prediction services exist. These...
Autores principales: | Vincent, Marc, Passerini, Andrea, Labbé, Matthieu, Frasconi, Paolo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375136/ https://www.ncbi.nlm.nih.gov/pubmed/18194539 http://dx.doi.org/10.1186/1471-2105-9-20 |
Ejemplares similares
-
DISULFIND: a disulfide bonding state and cysteine connectivity prediction server
por: Ceroni, Alessio, et al.
Publicado: (2006) -
MetalDetector v2.0: predicting the geometry of metal binding sites from protein sequence
por: Passerini, Andrea, et al.
Publicado: (2011) -
Improved multi-level protein–protein interaction prediction with semantic-based regularization
por: Saccà, Claudio, et al.
Publicado: (2014) -
Predicting zinc binding at the proteome level
por: Passerini, Andrea, et al.
Publicado: (2007) -
Prediction of reversible disulfide based on features from local structural signatures
por: Sun, Ming-an, et al.
Publicado: (2017)