Cargando…
Effects of dependence in high-dimensional multiple testing problems
BACKGROUND: We consider effects of dependence among variables of high-dimensional data in multiple hypothesis testing problems, in particular the False Discovery Rate (FDR) control procedures. Recent simulation studies consider only simple correlation structures among variables, which is hardly insp...
Autores principales: | Kim, Kyung In, van de Wiel, Mark A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375137/ https://www.ncbi.nlm.nih.gov/pubmed/18298808 http://dx.doi.org/10.1186/1471-2105-9-114 |
Ejemplares similares
-
Testing for association between RNA-Seq and high-dimensional data
por: Rauschenberger, Armin, et al.
Publicado: (2016) -
Flexible co‐data learning for high‐dimensional prediction
por: van Nee, Mirrelijn M., et al.
Publicado: (2021) -
‘SGoFicance Trace’: Assessing Significance in High Dimensional Testing Problems
por: de Uña-Alvarez, Jacobo, et al.
Publicado: (2010) -
ecpc: an R-package for generic co-data models for high-dimensional prediction
por: van Nee, Mirrelijn M., et al.
Publicado: (2023) -
Learning from a lot: Empirical Bayes for high‐dimensional model‐based prediction
por: van de Wiel, Mark A., et al.
Publicado: (2018)