Cargando…

Ornithine decarboxylase antizyme finder (OAF): Fast and reliable detection of antizymes with frameshifts in mRNAs

BACKGROUND: Ornithine decarboxylase antizymes are proteins which negatively regulate cellular polyamine levels via their affects on polyamine synthesis and cellular uptake. In virtually all organisms from yeast to mammals, antizymes are encoded by two partially overlapping open reading frames (ORFs)...

Descripción completa

Detalles Bibliográficos
Autores principales: Bekaert, Michaël, Ivanov, Ivaylo P, Atkins, John F, Baranov, Pavel V
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375905/
https://www.ncbi.nlm.nih.gov/pubmed/18384676
http://dx.doi.org/10.1186/1471-2105-9-178
_version_ 1782154671856549888
author Bekaert, Michaël
Ivanov, Ivaylo P
Atkins, John F
Baranov, Pavel V
author_facet Bekaert, Michaël
Ivanov, Ivaylo P
Atkins, John F
Baranov, Pavel V
author_sort Bekaert, Michaël
collection PubMed
description BACKGROUND: Ornithine decarboxylase antizymes are proteins which negatively regulate cellular polyamine levels via their affects on polyamine synthesis and cellular uptake. In virtually all organisms from yeast to mammals, antizymes are encoded by two partially overlapping open reading frames (ORFs). A +1 frameshift between frames is required for the synthesis of antizyme. Ribosomes change translation phase at the end of the first ORF in response to stimulatory signals embedded in mRNA. Since standard sequence analysis pipelines are currently unable to recognise sites of programmed ribosomal frameshifting, proper detection of full length antizyme coding sequences (CDS) requires conscientious manual evaluation by a human expert. The rapid growth of sequence information demands less laborious and more cost efficient solutions for this problem. This manuscript describes a rapid and accurate computer tool for antizyme CDS detection that requires minimal human involvement. RESULTS: We have developed a computer tool, OAF (ODC antizyme finder) for identifying antizyme encoding sequences in spliced or intronless nucleic acid sequenes. OAF utilizes a combination of profile hidden Markov models (HMM) built separately for the products of each open reading frame constituting the entire antizyme coding sequence. Profile HMMs are based on a set of 218 manually assembled antizyme sequences. To distinguish between antizyme paralogs and orthologs from major phyla, antizyme sequences were clustered into twelve groups and specific combinations of profile HMMs were designed for each group. OAF has been tested on the current version of dbEST, where it identified over six thousand Expressed Sequence Tags (EST) sequences encoding antizyme proteins (over two thousand antizyme CDS in these ESTs are non redundant). CONCLUSION: OAF performs well on raw EST sequences and mRNA sequences derived from genomic annotations. OAF will be used for the future updates of the RECODE database. OAF can also be useful for identifying novel antizyme sequences when run with relaxed parameters. It is anticipated that OAF will be used for EST and genome annotation purposes. OAF outputs sequence annotations in fasta, genbank flat file or XML format. The OAF web interface and the source code are freely available at and at a mirror site .
format Text
id pubmed-2375905
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-23759052008-05-10 Ornithine decarboxylase antizyme finder (OAF): Fast and reliable detection of antizymes with frameshifts in mRNAs Bekaert, Michaël Ivanov, Ivaylo P Atkins, John F Baranov, Pavel V BMC Bioinformatics Software BACKGROUND: Ornithine decarboxylase antizymes are proteins which negatively regulate cellular polyamine levels via their affects on polyamine synthesis and cellular uptake. In virtually all organisms from yeast to mammals, antizymes are encoded by two partially overlapping open reading frames (ORFs). A +1 frameshift between frames is required for the synthesis of antizyme. Ribosomes change translation phase at the end of the first ORF in response to stimulatory signals embedded in mRNA. Since standard sequence analysis pipelines are currently unable to recognise sites of programmed ribosomal frameshifting, proper detection of full length antizyme coding sequences (CDS) requires conscientious manual evaluation by a human expert. The rapid growth of sequence information demands less laborious and more cost efficient solutions for this problem. This manuscript describes a rapid and accurate computer tool for antizyme CDS detection that requires minimal human involvement. RESULTS: We have developed a computer tool, OAF (ODC antizyme finder) for identifying antizyme encoding sequences in spliced or intronless nucleic acid sequenes. OAF utilizes a combination of profile hidden Markov models (HMM) built separately for the products of each open reading frame constituting the entire antizyme coding sequence. Profile HMMs are based on a set of 218 manually assembled antizyme sequences. To distinguish between antizyme paralogs and orthologs from major phyla, antizyme sequences were clustered into twelve groups and specific combinations of profile HMMs were designed for each group. OAF has been tested on the current version of dbEST, where it identified over six thousand Expressed Sequence Tags (EST) sequences encoding antizyme proteins (over two thousand antizyme CDS in these ESTs are non redundant). CONCLUSION: OAF performs well on raw EST sequences and mRNA sequences derived from genomic annotations. OAF will be used for the future updates of the RECODE database. OAF can also be useful for identifying novel antizyme sequences when run with relaxed parameters. It is anticipated that OAF will be used for EST and genome annotation purposes. OAF outputs sequence annotations in fasta, genbank flat file or XML format. The OAF web interface and the source code are freely available at and at a mirror site . BioMed Central 2008-04-02 /pmc/articles/PMC2375905/ /pubmed/18384676 http://dx.doi.org/10.1186/1471-2105-9-178 Text en Copyright © 2008 Bekaert et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Software
Bekaert, Michaël
Ivanov, Ivaylo P
Atkins, John F
Baranov, Pavel V
Ornithine decarboxylase antizyme finder (OAF): Fast and reliable detection of antizymes with frameshifts in mRNAs
title Ornithine decarboxylase antizyme finder (OAF): Fast and reliable detection of antizymes with frameshifts in mRNAs
title_full Ornithine decarboxylase antizyme finder (OAF): Fast and reliable detection of antizymes with frameshifts in mRNAs
title_fullStr Ornithine decarboxylase antizyme finder (OAF): Fast and reliable detection of antizymes with frameshifts in mRNAs
title_full_unstemmed Ornithine decarboxylase antizyme finder (OAF): Fast and reliable detection of antizymes with frameshifts in mRNAs
title_short Ornithine decarboxylase antizyme finder (OAF): Fast and reliable detection of antizymes with frameshifts in mRNAs
title_sort ornithine decarboxylase antizyme finder (oaf): fast and reliable detection of antizymes with frameshifts in mrnas
topic Software
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375905/
https://www.ncbi.nlm.nih.gov/pubmed/18384676
http://dx.doi.org/10.1186/1471-2105-9-178
work_keys_str_mv AT bekaertmichael ornithinedecarboxylaseantizymefinderoaffastandreliabledetectionofantizymeswithframeshiftsinmrnas
AT ivanovivaylop ornithinedecarboxylaseantizymefinderoaffastandreliabledetectionofantizymeswithframeshiftsinmrnas
AT atkinsjohnf ornithinedecarboxylaseantizymefinderoaffastandreliabledetectionofantizymeswithframeshiftsinmrnas
AT baranovpavelv ornithinedecarboxylaseantizymefinderoaffastandreliabledetectionofantizymeswithframeshiftsinmrnas