Cargando…
C-Peptide and Its C-Terminal Fragments Improve Erythrocyte Deformability in Type 1 Diabetes Patients
Aims/hypothesis. Data now indicate that proinsulin C-peptide exerts important physiological effects and shows the characteristics of an endogenous peptide hormone. This study aimed to investigate the influence of C-peptide and fragments thereof on erythrocyte deformability and to elucidate the relev...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375968/ https://www.ncbi.nlm.nih.gov/pubmed/18483566 http://dx.doi.org/10.1155/2008/730594 |
Sumario: | Aims/hypothesis. Data now indicate that proinsulin C-peptide exerts important physiological effects and shows the characteristics of an endogenous peptide hormone. This study aimed to investigate the influence of C-peptide and fragments thereof on erythrocyte deformability and to elucidate the relevant signal transduction pathway. Methods. Blood samples from 23 patients with type 1 diabetes and 15 matched healthy controls were incubated with 6.6 nM of either human C-peptide, C-terminal hexapeptide, C-terminal pentapeptide, a middle fragment comprising residues 11–19 of C-peptide, or randomly scrambled C-peptide. Furthermore, red blood cells from 7 patients were incubated with C-peptide, penta- and hexapeptides with/without addition of ouabain, EDTA, or pertussis toxin. Erythrocyte deformability was measured using a laser diffractoscope in the shear stress range 0.3–60 Pa. Results. Erythrocyte deformability was impaired by 18–25% in type 1 diabetic patients compared to matched controls in the physiological shear stress range 0.6–12 Pa (P < .01–.001). C-peptide, penta- and hexapeptide all significantly improved the impaired erythrocyte deformability of type 1 diabetic patients, while the middle fragment and scrambled C-peptide had no detectable effect. Treatment of erythrocytes with ouabain or EDTA completely abolished the C-peptide, penta- and hexapeptide effects. Pertussis toxin in itself significantly increased erythrocyte deformability. Conclusion/interpretation. C-peptide and its C-terminal fragments are equally effective in improving erythrocyte deformability in type 1 diabetes. The C-terminal residues of C-peptide are causally involved in this effect. The signal transduction pathway is Ca(2+)-dependent and involves activation of red blood cell Na(+), K(+)-ATPase. |
---|