Cargando…
Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding
For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method—one that is similarly convenient,...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376064/ https://www.ncbi.nlm.nih.gov/pubmed/18493609 http://dx.doi.org/10.1371/journal.pone.0002258 |
_version_ | 1782154682840383488 |
---|---|
author | McGuigan, Alison P. Bruzewicz, Derek A. Glavan, Ana Butte, Manish Whitesides, George M. |
author_facet | McGuigan, Alison P. Bruzewicz, Derek A. Glavan, Ana Butte, Manish Whitesides, George M. |
author_sort | McGuigan, Alison P. |
collection | PubMed |
description | For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method—one that is similarly convenient, flexible, and reproducible—exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 μm, cell densities of 10(5) – 10(8) cells/cm(3), and total volumes between 1×10(−7) and 8×10(−4) cm(3). By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel™, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (10(8) – 10(9) cells/cm(3)). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering. |
format | Text |
id | pubmed-2376064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-23760642008-05-21 Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding McGuigan, Alison P. Bruzewicz, Derek A. Glavan, Ana Butte, Manish Whitesides, George M. PLoS One Research Article For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method—one that is similarly convenient, flexible, and reproducible—exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 μm, cell densities of 10(5) – 10(8) cells/cm(3), and total volumes between 1×10(−7) and 8×10(−4) cm(3). By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel™, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (10(8) – 10(9) cells/cm(3)). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering. Public Library of Science 2008-05-21 /pmc/articles/PMC2376064/ /pubmed/18493609 http://dx.doi.org/10.1371/journal.pone.0002258 Text en McGuigan et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article McGuigan, Alison P. Bruzewicz, Derek A. Glavan, Ana Butte, Manish Whitesides, George M. Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding |
title | Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding |
title_full | Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding |
title_fullStr | Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding |
title_full_unstemmed | Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding |
title_short | Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding |
title_sort | cell encapsulation in sub-mm sized gel modules using replica molding |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376064/ https://www.ncbi.nlm.nih.gov/pubmed/18493609 http://dx.doi.org/10.1371/journal.pone.0002258 |
work_keys_str_mv | AT mcguiganalisonp cellencapsulationinsubmmsizedgelmodulesusingreplicamolding AT bruzewiczdereka cellencapsulationinsubmmsizedgelmodulesusingreplicamolding AT glavanana cellencapsulationinsubmmsizedgelmodulesusingreplicamolding AT buttemanish cellencapsulationinsubmmsizedgelmodulesusingreplicamolding AT whitesidesgeorgem cellencapsulationinsubmmsizedgelmodulesusingreplicamolding |