Cargando…

A novel vascular endothelial growth factor-directed therapy that selectively activates cytotoxic prodrugs

We have generated fusion proteins between vascular endothelial growth factor (VEGF) and the bacterial enzyme carboxypeptidase G2 (CPG2) that can activate the prodrug 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-L-glutamic acid (CMDA). Three asparagine residues of CPG2 were mutated to glutamine (...

Descripción completa

Detalles Bibliográficos
Autores principales: Spooner, R A, Friedlos, F, Maycroft, K, Stribbling, S M, Roussel, J, Brueggen, J, Stolz, B, O'Reilly, T, Wood, J, Matter, A, Marais, R, Springer, C J
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377106/
https://www.ncbi.nlm.nih.gov/pubmed/12771932
http://dx.doi.org/10.1038/sj.bjc.6600911
Descripción
Sumario:We have generated fusion proteins between vascular endothelial growth factor (VEGF) and the bacterial enzyme carboxypeptidase G2 (CPG2) that can activate the prodrug 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-L-glutamic acid (CMDA). Three asparagine residues of CPG2 were mutated to glutamine (CPG2(Q)3) to prevent glycosylation during secretion, and truncations of VEGF(165) were fused to either the C- or N-terminal of CPG2. The K(m) of the fusion proteins (37.5 μM) was similar to that of secreted CPG2(Q)3 (29.5 μM) but greater than that of wild-type CPG2 (8 μM). The affinity of the fusion proteins for VEGF receptor-2 (VEGFR2) (K(d)=0.5–1.1 nM) was similar to that of [(125)I]VEGF (K(d)=0.5 nM) (ELISA) or slightly higher (K(d)=1.3–9.6 nM) (competitive RIA). One protein, VEGF(115)-CPG2(Q)3-H(6), possessed 140% of the enzymic activity of secreted CPG2(Q)3, and had a faster half-maximal binding time for VEGFR2 (77 s), than the other candidates (330 s). In vitro, VEGF(115)-CPG2(Q)3-H(6) targeted CMDA cytotoxicity only towards VEGFR-expressing cells. The plasma half-life of VEGF(115)-CPG2(Q)3-H(6) in vivo was 3 h, comparable to equivalent values observed in ADEPT. We conclude that enzyme prodrug therapy using VEGF as a targeting moiety represents a promising novel antitumour therapy, with VEGF(115)-CPG2(Q)3-H(6) being a lead candidate.