Cargando…
Minisequencing mitochondrial DNA pathogenic mutations
BACKGROUND: There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA) diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region p...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377236/ https://www.ncbi.nlm.nih.gov/pubmed/18402672 http://dx.doi.org/10.1186/1471-2350-9-26 |
Sumario: | BACKGROUND: There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA) diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. METHODS: We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. RESULTS: We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain) patients carrying haplogroup J lineages (Fisher's Exact test, P-value < 0.01). The assay performs well in mixture experiments of wild:mutant DNAs that emulate heteroplasmic conditions in mtDNA diseases. CONCLUSION: We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories. |
---|