Cargando…
A comparative study of different machine learning methods on microarray gene expression data
BACKGROUND: Several classification and feature selection methods have been studied for the identification of differentially expressed genes in microarray data. Classification methods such as SVM, RBF Neural Nets, MLP Neural Nets, Bayesian, Decision Tree and Random Forrest methods have been used in r...
Autores principales: | Pirooznia, Mehdi, Yang, Jack Y, Yang, Mary Qu, Deng, Youping |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386055/ https://www.ncbi.nlm.nih.gov/pubmed/18366602 http://dx.doi.org/10.1186/1471-2164-9-S1-S13 |
Ejemplares similares
-
SVM Classifier – a comprehensive java interface for support vector machine classification of microarray data
por: Pirooznia, Mehdi, et al.
Publicado: (2006) -
ILOOP – a web application for two-channel microarray interwoven loop design
por: Pirooznia, Mehdi, et al.
Publicado: (2008) -
A hybrid machine learning-based method for classifying the Cushing's Syndrome with comorbid adrenocortical lesions
por: Yang, Jack Y, et al.
Publicado: (2008) -
GeneVenn - A web application for comparing gene lists using Venn diagrams
por: Pirooznia, Mehdi, et al.
Publicado: (2007) -
Gene selection and classification for cancer microarray data based on machine learning and similarity measures
por: Liu, Qingzhong, et al.
Publicado: (2011)