Cargando…
Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection
BACKGROUND: Since the high dimensionality of gene expression microarray data sets degrades the generalization performance of classifiers, feature selection, which selects relevant features and discards irrelevant and redundant features, has been widely used in the bioinformatics field. Multi-task le...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386068/ https://www.ncbi.nlm.nih.gov/pubmed/18366616 http://dx.doi.org/10.1186/1471-2164-9-S1-S3 |
_version_ | 1782155204869750784 |
---|---|
author | Yang, Jack Y Li, Guo-Zheng Meng, Hao-Hua Yang, Mary Qu Deng, Youping |
author_facet | Yang, Jack Y Li, Guo-Zheng Meng, Hao-Hua Yang, Mary Qu Deng, Youping |
author_sort | Yang, Jack Y |
collection | PubMed |
description | BACKGROUND: Since the high dimensionality of gene expression microarray data sets degrades the generalization performance of classifiers, feature selection, which selects relevant features and discards irrelevant and redundant features, has been widely used in the bioinformatics field. Multi-task learning is a novel technique to improve prediction accuracy of tumor classification by using information contained in such discarded redundant features, but which features should be discarded or used as input or output remains an open issue. RESULTS: We demonstrate a framework for automatically selecting features to be input, output, and discarded by using a genetic algorithm, and propose two algorithms: GA-MTL (Genetic algorithm based multi-task learning) and e-GA-MTL (an enhanced version of GA-MTL). Experimental results demonstrate that this framework is effective at selecting features for multi-task learning, and that GA-MTL and e-GA-MTL perform better than other heuristic methods. CONCLUSIONS: Genetic algorithms are a powerful technique to select features for multi-task learning automatically; GA-MTL and e-GA-MTL are shown to to improve generalization performance of classifiers on microarray data sets. |
format | Text |
id | pubmed-2386068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-23860682008-06-04 Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection Yang, Jack Y Li, Guo-Zheng Meng, Hao-Hua Yang, Mary Qu Deng, Youping BMC Genomics Research BACKGROUND: Since the high dimensionality of gene expression microarray data sets degrades the generalization performance of classifiers, feature selection, which selects relevant features and discards irrelevant and redundant features, has been widely used in the bioinformatics field. Multi-task learning is a novel technique to improve prediction accuracy of tumor classification by using information contained in such discarded redundant features, but which features should be discarded or used as input or output remains an open issue. RESULTS: We demonstrate a framework for automatically selecting features to be input, output, and discarded by using a genetic algorithm, and propose two algorithms: GA-MTL (Genetic algorithm based multi-task learning) and e-GA-MTL (an enhanced version of GA-MTL). Experimental results demonstrate that this framework is effective at selecting features for multi-task learning, and that GA-MTL and e-GA-MTL perform better than other heuristic methods. CONCLUSIONS: Genetic algorithms are a powerful technique to select features for multi-task learning automatically; GA-MTL and e-GA-MTL are shown to to improve generalization performance of classifiers on microarray data sets. BioMed Central 2008-03-20 /pmc/articles/PMC2386068/ /pubmed/18366616 http://dx.doi.org/10.1186/1471-2164-9-S1-S3 Text en Copyright © 2008 Yang et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Yang, Jack Y Li, Guo-Zheng Meng, Hao-Hua Yang, Mary Qu Deng, Youping Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection |
title | Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection |
title_full | Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection |
title_fullStr | Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection |
title_full_unstemmed | Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection |
title_short | Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection |
title_sort | improving prediction accuracy of tumor classification by reusing genes discarded during gene selection |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386068/ https://www.ncbi.nlm.nih.gov/pubmed/18366616 http://dx.doi.org/10.1186/1471-2164-9-S1-S3 |
work_keys_str_mv | AT yangjacky improvingpredictionaccuracyoftumorclassificationbyreusinggenesdiscardedduringgeneselection AT liguozheng improvingpredictionaccuracyoftumorclassificationbyreusinggenesdiscardedduringgeneselection AT menghaohua improvingpredictionaccuracyoftumorclassificationbyreusinggenesdiscardedduringgeneselection AT yangmaryqu improvingpredictionaccuracyoftumorclassificationbyreusinggenesdiscardedduringgeneselection AT dengyouping improvingpredictionaccuracyoftumorclassificationbyreusinggenesdiscardedduringgeneselection |