Cargando…
Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins
BACKGROUND: Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi) and plants. We...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386819/ https://www.ncbi.nlm.nih.gov/pubmed/18430232 http://dx.doi.org/10.1186/1471-2148-8-115 |
_version_ | 1782155270437208064 |
---|---|
author | Grunt, Michal Žárský, Viktor Cvrčková, Fatima |
author_facet | Grunt, Michal Žárský, Viktor Cvrčková, Fatima |
author_sort | Grunt, Michal |
collection | PubMed |
description | BACKGROUND: Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi) and plants. We performed a phylogenomic analysis of formins in most eukaryotic kingdoms, aiming to reconstruct an evolutionary scenario that may have produced the current diversity of domain combinations with focus on the origin of the angiosperm formin architectures. RESULTS: The Rho GTPase-binding domain (GBD/FH3) reported from opisthokont and Dictyostelium formins was found in all lineages except plants, suggesting its ancestral character. Instead, mosses and vascular plants possess the two formin classes known from angiosperms: membrane-anchored Class I formins and Class II formins carrying a PTEN-like domain. PTEN-related domains were found also in stramenopile formins, where they have been probably acquired independently rather than by horizontal transfer, following a burst of domain rearrangements in the chromalveolate lineage. A novel RhoGAP-related domain was identified in some algal, moss and lycophyte (but not angiosperm) formins that define a specific branch (Class III) of the formin family. CONCLUSION: We propose a scenario where formins underwent multiple domain rearrangements in several eukaryotic lineages, especially plants and chromalveolates. In plants this replaced GBD/FH3 by a probably inactive RhoGAP-like domain, preserving a formin-mediated association between (membrane-anchored) Rho GTPases and the actin cytoskeleton. Subsequent amplification of formin genes, possibly coincident with the expansion of plants to dry land, was followed by acquisition of alternative membrane attachment mechanisms present in extant Class I and Class II formins, allowing later loss of the RhoGAP-like domain-containing formins in angiosperms. |
format | Text |
id | pubmed-2386819 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-23868192008-05-17 Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins Grunt, Michal Žárský, Viktor Cvrčková, Fatima BMC Evol Biol Research Article BACKGROUND: Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi) and plants. We performed a phylogenomic analysis of formins in most eukaryotic kingdoms, aiming to reconstruct an evolutionary scenario that may have produced the current diversity of domain combinations with focus on the origin of the angiosperm formin architectures. RESULTS: The Rho GTPase-binding domain (GBD/FH3) reported from opisthokont and Dictyostelium formins was found in all lineages except plants, suggesting its ancestral character. Instead, mosses and vascular plants possess the two formin classes known from angiosperms: membrane-anchored Class I formins and Class II formins carrying a PTEN-like domain. PTEN-related domains were found also in stramenopile formins, where they have been probably acquired independently rather than by horizontal transfer, following a burst of domain rearrangements in the chromalveolate lineage. A novel RhoGAP-related domain was identified in some algal, moss and lycophyte (but not angiosperm) formins that define a specific branch (Class III) of the formin family. CONCLUSION: We propose a scenario where formins underwent multiple domain rearrangements in several eukaryotic lineages, especially plants and chromalveolates. In plants this replaced GBD/FH3 by a probably inactive RhoGAP-like domain, preserving a formin-mediated association between (membrane-anchored) Rho GTPases and the actin cytoskeleton. Subsequent amplification of formin genes, possibly coincident with the expansion of plants to dry land, was followed by acquisition of alternative membrane attachment mechanisms present in extant Class I and Class II formins, allowing later loss of the RhoGAP-like domain-containing formins in angiosperms. BioMed Central 2008-04-22 /pmc/articles/PMC2386819/ /pubmed/18430232 http://dx.doi.org/10.1186/1471-2148-8-115 Text en Copyright ©2008 Grunt et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Grunt, Michal Žárský, Viktor Cvrčková, Fatima Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins |
title | Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins |
title_full | Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins |
title_fullStr | Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins |
title_full_unstemmed | Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins |
title_short | Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins |
title_sort | roots of angiosperm formins: the evolutionary history of plant fh2 domain-containing proteins |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386819/ https://www.ncbi.nlm.nih.gov/pubmed/18430232 http://dx.doi.org/10.1186/1471-2148-8-115 |
work_keys_str_mv | AT gruntmichal rootsofangiospermforminstheevolutionaryhistoryofplantfh2domaincontainingproteins AT zarskyviktor rootsofangiospermforminstheevolutionaryhistoryofplantfh2domaincontainingproteins AT cvrckovafatima rootsofangiospermforminstheevolutionaryhistoryofplantfh2domaincontainingproteins |