Cargando…
Performance of a Self-Paced Brain Computer Interface on Data Contaminated with Eye-Movement Artifacts and on Data Recorded in a Subsequent Session
The performance of a specific self-paced BCI (SBCI) is investigated using two different datasets to determine its suitability for using online: (1) data contaminated with large-amplitude eye movements, and (2) data recorded in a session subsequent to the original sessions used to design the system....
Autores principales: | Fatourechi, Mehrdad, Ward, Rabab K., Birch, Gary E. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386957/ https://www.ncbi.nlm.nih.gov/pubmed/18497872 http://dx.doi.org/10.1155/2008/749204 |
Ejemplares similares
-
Application of a hybrid wavelet feature selection method in the design of a self-paced brain interface system
por: Fatourechi, Mehrdad, et al.
Publicado: (2007) -
Automatic artefact removal in a self-paced hybrid brain- computer interface system
por: Yong, Xinyi, et al.
Publicado: (2012) -
Towards Development of a 3-State Self-Paced Brain-Computer Interface
por: Bashashati, Ali, et al.
Publicado: (2007) -
Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data
por: Plöchl, Michael, et al.
Publicado: (2012) -
Performance-based approach for movement artifact removal from electroencephalographic data recorded during locomotion
por: Arad, Evyatar, et al.
Publicado: (2018)