Cargando…

Effects of attention on the control of locomotion in individuals with chronic low back pain

BACKGROUND: People who suffer from low back pain (LBP) exhibit an abnormal gait pattern, characterized by shorter stride length, greater step width, and an impaired thorax-pelvis coordination which may undermine functional walking. As a result, gait in LBP may require stronger cognitive regulation c...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamoth, Claudine JC, Stins, John F, Pont, Menno, Kerckhoff, Frederick, Beek, Peter J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2387160/
https://www.ncbi.nlm.nih.gov/pubmed/18439264
http://dx.doi.org/10.1186/1743-0003-5-13
Descripción
Sumario:BACKGROUND: People who suffer from low back pain (LBP) exhibit an abnormal gait pattern, characterized by shorter stride length, greater step width, and an impaired thorax-pelvis coordination which may undermine functional walking. As a result, gait in LBP may require stronger cognitive regulation compared to pain free subjects thereby affecting the degree of automaticity of gait control. Conversely, because chronic pain has a strong attentional component, diverting attention away from the pain might facilitate a more efficient walking pattern. METHODS: Twelve individuals with LBP and fourteen controls participated. Subjects walked on a treadmill at comfortable speed, under varying conditions of attentional load: (a) no secondary task, (b) naming the colors of squares on a screen, (c) naming the colors of color words ("color Stroop task"), and (d) naming the colors of words depicting motor activities. Markers were attached to the thorax, pelvis and feet. Motion was recorded using a three-camera SIMI system with a sample frequency of 100 Hz. To examine the effects of health status and attention on gait, mean and variability of stride parameters were calculated. The coordination between thoracic and pelvic rotations was quantified through the mean and variability of the relative phase between those oscillations. RESULTS: LBP sufferers had a lower walking speed, and consequently a smaller stride length and lower mean thorax-pelvis relative phase. Stride length variability was significantly lower in the LBP group but no significant effect of attention was observed. In both groups gait adaptations were found under performance of an attention demanding task, but significantly more so in individuals with LBP as indicated by an interaction effect on relative phase variability. CONCLUSION: Gait in LBP sufferers was characterized by less variable upper body movements. The diminished flexibility in trunk coordination was aggravated under the influence of an attention demanding task. This provides further evidence that individuals with LBP tighten their gait control, and this suggests a stronger cognitive regulation of gait coordination in LBP. These changes in gait coordination reduce the capability to deal with unexpected perturbations, and are therefore maladaptive.