Cargando…

Algorithms for converting estimates of child malnutrition based on the NCHS reference into estimates based on the WHO Child Growth Standards

BACKGROUND: The child growth standards released by the World Health Organization (WHO) in 2006 have several technical advantages over the previous 1977 National Center for Health Statistics (NCHS)/WHO reference and are recommended for international comparisons and secular trend analysis of child mal...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Hong, de Onis, Mercedes
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390546/
https://www.ncbi.nlm.nih.gov/pubmed/18457590
http://dx.doi.org/10.1186/1471-2431-8-19
Descripción
Sumario:BACKGROUND: The child growth standards released by the World Health Organization (WHO) in 2006 have several technical advantages over the previous 1977 National Center for Health Statistics (NCHS)/WHO reference and are recommended for international comparisons and secular trend analysis of child malnutrition. To obtain comparable data over time, earlier surveys should be reanalyzed using the WHO standards; however, reanalysis is impossible for older surveys since the raw data are not available. This paper provides algorithms for converting estimates of child malnutrition based on the NCHS reference into estimates based on the WHO standards. METHODS: Sixty-eight surveys from the WHO Global Database on Child Growth and Malnutrition were analyzed using the WHO standards to derive estimates of underweight, stunting, wasting and overweight. The prevalences based on the NCHS reference were taken directly from the database. National/regional estimates with a minimum sample size of 400 children were used to develop the algorithms. For each indicator, a simple linear regression model was fitted, using the logit of WHO and NCHS estimates as, respectively, dependent and independent variables. The resulting algorithms were validated using a different set of surveys, on the basis of which the point estimate and 95% confidence interval (CI) of the predicted WHO prevalence were compared to the observed prevalence. RESULTS: In total, 271 data points were used to develop the algorithms. The correlation coefficients (R(2)) were all greater than 0.90, indicating that most of the variability of the dependent variable is explained by the fitted model. The average difference between the predicted WHO estimate and the observed value was <0.5% for stunting, wasting and overweight. For underweight, the mean difference was 0.8%. The proportion of the 95% CI of the predicted estimate containing the observed prevalence was above 90% for all four indicators. The algorithms performed equally well for surveys without the entire age coverage 0 to 60 months. CONCLUSION: To obtain comparable data concerning child malnutrition, individual survey data should be analyzed using the WHO standards. When the raw data are not available, the algorithms presented here provide a highly accurate tool for converting existing NCHS estimates into WHO estimates.