Cargando…
Probabilistic Latent Variable Models as Nonnegative Factorizations
This paper presents a family of probabilistic latent variable models that can be used for analysis of nonnegative data. We show that there are strong ties between nonnegative matrix factorization and this family, and provide some straightforward extensions which can help in dealing with shift invari...
Autores principales: | Shashanka, Madhusudana, Raj, Bhiksha, Smaragdis, Paris |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2391276/ https://www.ncbi.nlm.nih.gov/pubmed/18509481 http://dx.doi.org/10.1155/2008/947438 |
Ejemplares similares
-
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Incorporating Latent Variables Using Nonnegative Matrix Factorization Improves Risk Stratification in Brugada Syndrome
por: Tse, Gary, et al.
Publicado: (2020) -
Nonnegative matrices
por: Minc, Henryk
Publicado: (1988) -
Gene Feature Extraction Based on Nonnegative Dual Graph Regularized Latent Low-Rank Representation
por: Yang, Guoliang, et al.
Publicado: (2017) -
Nonnegative Matrix Factorization with Gaussian Process Priors
por: Schmidt, Mikkel N., et al.
Publicado: (2008)