Cargando…
Progressive resistance of BTK-143 osteosarcoma cells to Apo2L/TRAIL-induced apoptosis is mediated by acquisition of DcR2/TRAIL-R4 expression: resensitisation with chemotherapy
Apo2 ligand (Apo2L, also known as TRAIL) is a member of the tumour necrosis factor (TNF) family of cytokines that selectively induces the death of cancer cells, but not of normal cells. We observed that recombinant Apo2L/TRAIL was proapoptotic in early-passage BTK-143 osteogenic sarcoma cells, induc...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394221/ https://www.ncbi.nlm.nih.gov/pubmed/12838325 http://dx.doi.org/10.1038/sj.bjc.6601021 |
Sumario: | Apo2 ligand (Apo2L, also known as TRAIL) is a member of the tumour necrosis factor (TNF) family of cytokines that selectively induces the death of cancer cells, but not of normal cells. We observed that recombinant Apo2L/TRAIL was proapoptotic in early-passage BTK-143 osteogenic sarcoma cells, inducing 80% cell death during a 24 h treatment period. Apo2L/TRAIL-induced apoptosis was blocked by caspase inhibition. With increasing passage in culture, BTK-143 cells became progressively resistant to the apoptotic effects of Apo2L/TRAIL. RNA and flow cytometric analysis demonstrated that resistance to Apo2L/TRAIL was paralleled by progressive acquisition of the decoy receptor, DcR2. Blocking of DcR2 function with a specific anti-DcR2 antibody restored sensitivity to Apo2L/TRAIL in a dose-dependent manner. Importantly, treatment of resistant cells with the chemotherapeutic agents doxorubicin, cisplatin and etoposide reversed the resistance to Apo2L/TRAIL, which was associated with drug-induced upregulation of mRNA encoding the death receptors DR4 and DR5. BTK-143 cells thus represent a useful model system to investigate both the mechanisms of acquisition of resistance of tumour cells to Apo2L/TRAIL and the use of conventional drugs and novel agents to overcome resistance to Apo2L/TRAIL. |
---|