Cargando…

Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth

Hydrolysis of plasma arginine to citrulline by arginine deiminase (ADI) was recently shown to suppress lipopolysaccharide-induced nitric oxide (NO) synthesis. Since arginine is the precursor of NO, and the latter modulates angiogenesis, we explored whether ADI treatment significantly affected tube-l...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, I-S, Kang, S-W, Shin, Y-J, Chae, K-Y, Park, M-O, Kim, M-Y, Wheatley, D N, Min, B-H
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394481/
https://www.ncbi.nlm.nih.gov/pubmed/12942125
http://dx.doi.org/10.1038/sj.bjc.6601181
Descripción
Sumario:Hydrolysis of plasma arginine to citrulline by arginine deiminase (ADI) was recently shown to suppress lipopolysaccharide-induced nitric oxide (NO) synthesis. Since arginine is the precursor of NO, and the latter modulates angiogenesis, we explored whether ADI treatment significantly affected tube-like (capillary) formation of human umbilical vein endothelial cells. Inhibition occurred in a dose-dependent manner, both in the chorioallantoic membrane and the murine Matrigel plug assay. Inhibition of angiogenesis by ADI was reversed when a surplus of exogenous arginine was provided, indicating that its antiangiogenic effect is primarily due to arginine depletion, although other pathways of interference are not entirely excluded. Arginine deiminase is also shown to be as a potent inhibitor of tumour growth in vitro as in vivo, being effective at nanogram quantities per millilitre in CHO and HeLa cells. Thus, it could be highly beneficial in cancer therapy because of its two-pronged attack as both an antiproliferative and an antiangiogenic agent.